Embedding products into symmetric products of finite graphs

Florencio Corona-Vázquez, Russell Aarón Quiñones-Estrella*, Javier Sánchez-Martínez, Hugo Villanueva
Universidad Autónoma de Chiapas, Facultad de Ciencias en Física y Matemáticas, Carretera Emiliano Zapata Km. 8, Rancho San Francisco, Terán, C.P. 29050, Tuxtla Gutiérrez, Chiapas, Mexico

A R T I C L E I N F O

Article history:

Received 3 April 2018
Accepted 4 April 2018
Available online 5 April 2018

$M S C$:

54B10
54B20
54C25
54 F 15
Keywords:
Continuum
Embedding
Finite graph
Product
Symmetric products

Abstract

For each positive integer n and a continuum X, we will denote by $F_{n}(X)$ the n th-symmetric product of X and by X^{n} the product of X with itself n times. In this paper we study finite graphs X such that X^{n} can be embedded in $F_{n}(X)$. We also present a geometric model of the third symmetric product of a simple triod. © 2018 Published by Elsevier B.V.

1. Introduction

A continuum means a nonempty, compact, connected metric space. Given a continuum X and a positive integer n, we denote by X^{n} the product of X with itself n times with the product topology and by $F_{n}(X)$ the hyperspace of all nonempty subsets of X with at most n points, endowed with the Hausdorff metric (see [8, Definition 0.1, p. 1]), this is the so called nth-symmetric product of X. It is known that $F_{n}(X)$ is a continuous image of X^{n} (see [1, p. 877]). In [4] the authors studied the problem of determining continua X such that X^{n} can be embedded in $F_{n}(X)$, they proved that if X is a finite graph then X^{2} can be embedded into $F_{2}(X)$ if and only if X is an arc. In Section 3, we show some results for $n \geq 3$, in this direction, Theorem 3.6 is the main result of the section:

If X is a finite graph then X^{3} can be embedded into $F_{3}(X)$ if and only if X is an arc.

[^0]In Section 4, we give a positive answer to a question asked by E. Castañeda and J. Sánchez in [4, Question 4.14, p. 205]. In [6, pages 55 and 56] it is commented that E. Castañeda found a model for $F_{3}(Y)$, where Y is a simple triod. It says that Castañeda showed that $F_{3}(Y)$ is the cone over a torus with four disks attached to it, one as an "equator" and the three other ones as "meridians" (see Figure 24 in [6]). In Section 5 of this paper we show that the model proposed by Castañeda is wrong. We construct a correct model, the difference with Castañeda proposal is that one must change the torus by a Klein bottle, with the four disks attached in a similar way.

2. Preliminaries

By a finite graph we mean a continuum X which can be written as the union of finitely many arcs, any two of which are either disjoint or intersect only in one or both of their end points. Given a positive integer n, a simple n-od is a finite graph, denoted by T_{n}, which is the union of n arcs emanating from a single point, v, and otherwise disjoint from one another. The point v is called the vertex of the simple n-od. A simple 3 -od, T_{3}, will be called a simple triod. An n-cell is a space homeomorphic to $[0,1]^{n}$.

Given a finite graph $X, p \in X$ and a positive integer n, we say that p is of order n in X, denoted by $\operatorname{ord}(p, X)=n$, if p has a closed neighborhood which is homeomorphic to a simple n-od having p as the vertex. If $\operatorname{ord}(p, X)=1$, then p has a neighborhood which is an arc having p as one of its end points and we will call it an end point of X. If $\operatorname{ord}(p, X)=2$, then p has a neighborhood which is an arc, p is not an end point of it, and we will call it an ordinary point of X. A point $p \in X$ is a ramification point of X if $\operatorname{ord}(p, X) \geq 3$. The vertices of a finite graph X will be the end points and the ramification points of X. An edge will be an arc joining two vertices of X and having exactly two vertices of X. The set of all ramification points of X will be denoted by $R(X)$.

For a positive integer m, a complete graph, denoted by K_{m}, is a finite graph with exactly m vertices such that any two vertices are joined by exactly one of its edges. Let V be the set of vertices of a finite graph X, we say that X is bipartite if there exist two nonempty subsets V_{1} and V_{2} of V such that $V=V_{1} \cup V_{2}$, $V_{1} \cap V_{2}=\emptyset$ and each edge of X joins a vertex of V_{1} with a vertex of V_{2}. A bipartite graph X is said to be complete bipartite if each vertex of V_{1} is joined to every vertex of V_{2} by edges of X. Given two positive integers m and $n, K_{m, n}$ will denote a complete bipartite graph such that $\left|V_{1}\right|=m,\left|V_{2}\right|=n$. A simple closed curve is any space homeomorphic to $S^{1}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\}$. In general, for a positive integer n, S^{n} will denote the n-dimensional unit sphere in \mathbb{R}^{n+1}.

Given a topological space X, the topological cone of X, denoted by cone (X), is the quotient space obtained from $X \times[0,1]$ by shrinking $X \times\{1\}$ to a point.

Given positive integers m and n, and nonempty subsets K_{1}, \ldots, K_{m} of a continuum X, we will denote by $\left\langle K_{1}, \ldots, K_{m}\right\rangle_{n}$ the set

$$
\left\{A \in F_{n}(X): A \subset \bigcup_{i=1}^{m} K_{i} \text { and for each } i \in\{1, \ldots, m\}, A \cap K_{i} \neq \emptyset\right\}
$$

For a positive integer n, it is known that the sets of the form $\left\langle U_{1}, \ldots, U_{m}\right\rangle_{n}$, where m is a positive integer and each set U_{i} is open in X, form a basis for the topology of $F_{n}(X)$ called the Vietoris topology (see [8, Theorem 0.11, p. 9$]$), and that the Vietoris topology and the topology induced by the Hausdorff metric are the same (see [8, Theorem 0.13, p. 9]).

3. Embedding X^{n} into $F_{n}(X)$

First, we consider the arc, the simple closed curve and simple n-ods. It is known that $[0,1]^{n}$ is embedded into $F_{n}([0,1])$ for each positive integer n. For the simple closed curve we have the following.

https://daneshyari.com/en/article/8903996

Download Persian Version:

https://daneshyari.com/article/8903996

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: florencio.corona@unach.mx (F. Corona-Vázquez), rusell.quinones@unach.mx (R.A. Quiñones-Estrella), jsanchezm@unach.mx (J. Sánchez-Martínez), hugo.villanueva@unach.mx (H. Villanueva).

