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In this paper, we give definitions of three kinds of minimal charts, and we investigate 
properties of minimal charts and establish fundamental theorems characterizing 
minimal charts. To classify charts with two or three crossings we use the fundamental 
theorems. In the future paper, we give an enumeration of the charts with two 
crossings.
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1. Introduction

Charts are oriented labeled graphs in a disk with three kinds of vertices called black vertices, crossings, 
and white vertices (see page 3 for the precise definition of charts). From a chart, we can construct an oriented 
closed surface embedded in 4-space R4 (see [6, Chapter 14, Chapter 18 and Chapter 23]). A C-move is a 
local modification between two charts in a disk (see Section 2 for C-moves). A C-move between two charts 
induces an ambient isotopy between oriented closed surfaces corresponding to the two charts. Two charts 
are said to be C-move equivalent if there exists a finite sequence of C-moves which modifies one of the two 
charts to the other.

We will work in the PL or smooth category. All submanifolds are assumed to be locally flat. A surface link
is a closed surface embedded in 4-space R4. A 2-link is a surface link each of whose connected component 
is a 2-sphere. A 2-knot is a surface link which is a 2-sphere. An orientable surface link is called a ribbon 
surface link if there exists an immersion of a 3-manifold M into R4 sending the boundary of M onto the 
surface link such that each connected component of M is a handlebody and its singularity consists of ribbon 

* Corresponding author.
E-mail addresses: nagase @keyaki .cc .u -tokai .ac .jp (T. Nagase), shima @keyaki .cc .u -tokai .ac .jp (A. Shima).

1 The second author was supported by JSPS KAKENHI Grant Number 23540107.

https://doi.org/10.1016/j.topol.2018.04.001
0166-8641/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.topol.2018.04.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/topol
mailto:nagase@keyaki.cc.u-tokai.ac.jp
mailto:shima@keyaki.cc.u-tokai.ac.jp
https://doi.org/10.1016/j.topol.2018.04.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.topol.2018.04.001&domain=pdf


292 T. Nagase, A. Shima / Topology and its Applications 241 (2018) 291–332

Fig. 1. The letter m is a label and ε = ±1.

singularities, here a ribbon singularity is a disk in the image of M whose pre-image consists of two disks; 
one of the two disks is a proper disk of M and the other is a disk in the interior of M . In the words of 
charts, a ribbon surface link is a surface link corresponding to a ribbon chart, a chart C-move equivalent 
to a chart without white vertices [4]. A chart is called a 2-link chart if a surface link corresponding to the 
chart is a 2-link.

In this paper, we denote the closure, the interior, the boundary, and the complement of (...) by Cl(...), 
Int(...), ∂(...), (...)c respectively. Also for a finite set X, the notation |X| denotes the number of elements 
in X.

Kamada showed that any 3-chart is a ribbon chart [4]. Kamada’s result was extended by Nagase and 
Hirota: Any 4-chart with at most one crossing is a ribbon chart [7]. We showed that any n-chart with at 
most one crossing is a ribbon chart [13]. We also showed that any 2-link chart with at most two crossings 
is a ribbon chart [14], [15].

Charts have strong conditions on orientations of arcs around vertices. In a small neighborhood of each 
white vertex, there are six short arcs, three consecutive arcs are oriented inward and the other three are 
outward (see Fig. 2(c)). Among six short arcs in a small neighborhood of a white vertex, a central arc of each 
three consecutive arcs oriented inward (resp. outward) is called a middle arc at the white vertex. Observing 
precisely middle arcs, orientations of edges, and a part of a chart cutting by a disk called a tangle, we shall 
prove the following theorem [18]:

Any 2-link chart with at most three crossings is C-move equivalent to either a ribbon chart, or the 
disjoint union of a ribbon chart and a chart as shown in Fig. 1 or its “reflection”.

In this paper we establish fundamental theorems characterizing c-minimal charts, w-minimal charts and 
cw-minimal charts. For the classification theorem above, we use the fundamental theorems obtained in this 
paper.

For a 4-chart as shown in Fig. 1, we obtain a 2-twist spun trefoil by setting m = 2 (see [4, p. 144], [6, 
p. 170]). It is well known that the 2-knot is not a ribbon 2-knot. On the other hand, Hasegawa showed 
that if a non-ribbon chart representing a 2-knot is minimal, then the chart must possess at least six white 
vertices [2] where a minimal chart Γ means its complexity (w(Γ), −f(Γ)) is minimal among the charts 
C-move equivalent to the chart Γ with respect to the lexicographic order of pairs of integers, here w(Γ) is 
the number of white vertices in Γ, f(Γ) is the number of free edges in Γ. Here a free edge is an edge of Γ
containing two black vertices. Nagase, Ochiai, and Shima showed that there does not exist a minimal chart 
with exactly five white vertices [19]. Nagase and Shima show that there does not exist a minimal chart with 
exactly seven white vertices [8],[9],[10],[11],[12]. Ishida, Nagase, and Shima showed that any minimal chart 
with exactly four white vertices is C-move equivalent to a chart in two kinds of classes [3].
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