

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Virtual Special Issue – TOPOSYM 2016

On the estimation of the large inductive dimension of a product of compacta $^{\bigstar}$

D.N. Georgiou a,*, K.L. Kozlov b

- ^a University of Patras, Department of Mathematics, 265 04 Patras, Greece
- ^b Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Russia

ARTICLE INFO

Article history: Received 19 December 2016 Received in revised form 7 August 2017

Accepted 4 December 2017 Available online 27 March 2018

MSC: 54B99 54C25

Keywords: Large inductive dimension Product space Normal base Base dimensions I

ABSTRACT

We prove the analog of Pasynkov's result on finite-dimensionality of topological products for the dimension-like function I defined by S. Iliadis. Let \mathcal{F}_j be a normal base on a topological space X_j , j=1, 2. Then $I(X_1\times X_2,\mathcal{F}_1\otimes \mathcal{F}_2)\leq \varphi(I(X_1,\mathcal{F}_1),\ I(X_2,\mathcal{F}_2))$, where φ is a recursion relation. As a consequence we get the result on the finite-dimensionality of topological products of compacta for the large inductive dimension.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

One of the central questions in dimension theory is the question of estimation of dimension of products. See [2], [6] and [15] for details. In the case of the large inductive dimension of compacta there are the result of V. V. Filippov [7] which demonstrates the non-fulfillment of the inequality

$$\operatorname{Ind}(X \times Y) \leq \operatorname{Ind}X + \operatorname{Ind}Y$$
,

and the result of B. A. Pasynkov [16] which states, among other things, that the product of finite dimensional compacta is finite dimensional (see, also [14] where this result is given without proof). Moreover, the recursion

E-mail addresses: georgiou@math.upatras.gr (D.N. Georgiou), kkozlov@mech.math.msu.su (K.L. Kozlov).

[☆] Work is supported by the Erasmus Programme of the University of Patras.

^{*} Corresponding author.

relation for the function that estimates the dimension of the normal product of a nonempty normal and compact spaces by the dimensions of its factors is given there:

$$\operatorname{Ind}(X \times Y) \leq d(\operatorname{Ind}X, \operatorname{Ind}Y),$$

where $d: \omega \times \omega \to \omega$ is a map such that d(0, m) = m if $m \in \omega$, d(m, 0) = (m + 1)d(m - 1, 0) + 1 if m > 0, d(k, m) = (k + 1)(d(k - 1, m) + d(k, m - 1)) + 1 if k, m > 0.

In the case of compacta the estimation function can easily be modified. Let $d': \omega \times \omega \to \omega$ be a map such that d'(0,m) = d'(m,0) = m if $m \in \omega$, $d'(k,m) = (\min\{k,m\}+1)(d'(k-1,m)+d'(k,m-1))+1$ if k,m>0. So, we have d'(n,m):

m / n	0	1	2	3	
0	0	1	2 15	3	
1	1	5	15	37	
2	2	15	91		
3	3	5 15 37			

Recently in [13] the exact value of the dimension of the product of compacta in Filippov's example was given. This result was obtained with the usage of the dimension-like function I of a space by a normal base which was introduced by S. Iliadis [11]. In the present paper we prove the analog of Pasynkov's result on finite-dimensionality of topological products for the dimension-like function I. As a consequence we get the result on the finite-dimensionality of topological products of compacta for the large inductive dimension.

$$\operatorname{Ind}(X \times Y) \leq \varphi(\operatorname{Ind}X, \operatorname{Ind}Y),$$

where $\varphi : \omega \times \omega \to \omega$ is a map such that $\varphi(0, m) = \varphi(m, 0) = m$ if $m \in \omega$, $\varphi(1, 1) = 2$, $\varphi(1, m) = \varphi(m, 1) = 2\varphi(1, m - 1) + m + 1$ if m > 1, $\varphi(n, m) = (\min\{n, m\} + 1)(\varphi(n - 1, m) + \varphi(n, m - 1)) + 1$ if n > 1, m > 1. So, we have $\varphi(n, m)$:

m / n	0	1	2	3	4	
0	0	1	2	3	4	
1	1	2	7	18	41	
2	2	7	43	184		
3	3	18	184	1473		
4	4	41				

All spaces are assumed to be Tychonoff, maps are continuous and notations, terminology and designations are from [5]. By a neighborhood we always understand an open neighborhood and clA is the closure of a subset A of a space X.

2. Preliminaries

The notion of a normal base for the closed subsets of a space was defined in [8]. The existence of such bases characterizes Tychonoff spaces. Natural normal bases are the following:

- (a) the family of all closed subsets of a normal space;
- (b) the family Z(X) of all zero-sets of a completely regular space X; and

Download English Version:

https://daneshyari.com/en/article/8904013

Download Persian Version:

https://daneshyari.com/article/8904013

<u>Daneshyari.com</u>