

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Cobordism classes of maps and covers for spheres

Oleg R. Musin ^{a,1}, Jie Wu ^{b,*,2}

- ^a School of Mathematical and Statistical Sciences, University of Texas Rio Grande Valley, One West University Boulevard, Brownsville, TX, 78520, USA

 b Department of Mathematics, National University of Singapore, S17-06-02, 10 Lower Kent Ridge Road,
- Singapore 119076, Singapore

ARTICLE INFO

Article history: Received 15 July 2017 Received in revised form 2 January

Accepted 2 January 2018 Available online 5 January 2018

Keywords: Cobordism Homotopy group Covers

ABSTRACT

In this paper we show that for m > n the set of cobordism classes of maps from m-sphere to n-sphere is trivial. The determination of the cobordism homotopy groups of spheres admits applications to the covers for spheres.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Let M_1 and M_2 be compact oriented manifolds of dimension m. Two continuous maps $f_1: M_1 \to X$ and $f_2: M_2 \to X$ are called cobordant if there are a compact oriented manifold W with $\partial W = M_1 \sqcup M_2$ and a continuous map $F: W \to X$ such that $F|_{M_i} = f_i$ for i = 1, 2. Note that the set of cobordism classes $f: S^m \to X$ form a group $\pi_m^C(X)$ that is a quotient of $\pi_m(X)$.

In Section 2 we consider assumptions for X such that $\pi_m^C(X) = 0$ (Theorem 2.1). In particular, Corollary 2.2 states that $\pi_n^C(S^n) = \pi_n(S^n) = \mathbb{Z}$ and if m > n then

$$\pi_m^C(S^n) = 0.$$

In Section 3 we show that for manifolds the homotopy and cobordism classes of covers are equivalent to the homotopy and cobordism classes of their associated maps. Then we can apply results of Sections 2 for covers, in particular, see Corollary 3.6.

^{*} Corresponding author.

E-mail addresses: oleg.musin@utrgv.edu (O.R. Musin), matwuj@nus.edu.sg (J. Wu).

 $^{^{1}}$ The first author is partially supported by the NSF grant DMS-1400876 and the RFBR grant 15-01-99563.

² The second author is partially supported by the Singapore Ministry of Education research grant (AcRF Tier 1 WBS No. R-146-000-222-112) and a grant (No. 11329101) of NSFC of China.

2. Cobordism classes of maps for spheres

Consider a group of oriented cobordism classes of maps $\Omega_*^{SO}(X)$ [1, Chapter 1]. Let M_i , i=1,2, be compact oriented manifolds without boundary of dimension m. Let $f_i: M_i \to X$, i=1,2, be continuous maps to a space X. Then $[f_1]_C = [f_2]_C$ in $\Omega_m^{SO}(X)$, i.e. maps f_i are cobordant if there are a compact oriented manifold W with $\partial W = M_1 \sqcup M_2$ and a continuous map $F: W \to X$ such that $F|_{M_i} = f_i$ for i=1,2.

If $M_2 = \emptyset$, then $[f_1]_C = 0$. In this case f_1 is called *null-cobordant*.

Let M be a compact oriented manifold without boundary. We denote the set of cobordism classes of $f: M \to X$ by $[M, X]_C$.

Theorem 2.1. Let X be a finite CW-complex whose integral homology $H_*(X,\mathbb{Z})$ has only 2-torsion. Let $f: S^m \to X$ be a map that induces zero homomorphism of m-dimensional cohomology with coefficients in \mathbb{Z} and \mathbb{Z}_2 . Then f is null-cobordant in $\Omega_m^{SO}(X)$ the image of f is 0. In particular, $[S^m, X]_C = 0$ if $\dim X < m$.

Proof. By [1, Theorem 17.6], the cobordism class of $f: S^m \to X$ is determined by the Pontrjagin numbers and the Stiefel-Whitney numbers of the map f. From the definition, the Pontrjagin numbers and the Stiefel-Whitney numbers of the map f are determined by its induced homomorphisms on cohomology with coefficients in \mathbb{Z} and \mathbb{Z}_2 , respectively. The hypothesis in the statement guarantees that f and the constant map induce the same homomorphism on cohomology with coefficients in \mathbb{Z} and \mathbb{Z}_2 , and hence the result. \square

Let M be an m-dimensional sphere S^m . In this case denote $[M, S^n]_C$ by $\pi_m^C(S^n)$. It is easy to prove that the cobordism classes $\pi_m^C(S^n)$ form a group. Moreover, there is a subgroup N in $\pi_m(S^n)$ such that

$$\pi_m^C(S^n) = \pi_m(S^n)/N.$$

Corollary 2.2. If $m \neq n$, then $\pi_m^C(S^n) = 0$, otherwise $\pi_n^C(S^m) = \mathbb{Z}$.

Proof. We obviously have the case m < n. Theorem 2.1 yields the most complicated case.

Let m=n. The Hopf degree theorem (see [4, Sect. 7]) states that two continuous maps $f_1, f_2: S^n \to S^n$ are homotopic, i.e. $[f_1]=[f_2]$ in $\pi_n(S^n)$, if and only if deg $f_1=\deg f_2$. It is clear that $[f_1]=[f_2]$ implies $[f_1]_C=[f_2]_C$. Now we show that from $[f_1]_C=[f_2]_C$ follows deg $f_1=\deg f_2$. Indeed, then we have $F:W\to S^n$ with $F|_{M_i=S^n}=f_i$. Note that $Z:=F^{-1}(x)$ for a regular $x\in S^n$, is a manifold of dimension one. It is easy to see that a cobordism (Z,Z_1,Z_2) , where $Z_i:=f_i^{-1}(x)$, implies deg $f_1=\deg f_2$. Thus, $\pi_n^C(S^n)=\pi_n(S^n)=\mathbb{Z}$. \square

Corollary 2.2 states that $f: S^m \to S^n$ is null-cobordant for m > n. Therefore, we have the following result.

Corollary 2.3. Let m > n. Then for any continuous map $f : S^m \to S^n$ there are a compact oriented manifold W with $\partial W = S^m$ and a continuous map $F : W \to S^n$ such that F on the boundary coincides with f.

Remark. In the earlier version of this paper, we had a proof that $\pi_m^C(S^n) = 0$, where m > n only for particular cases. We formulated this statement as a conjecture and sent the preprint to several topologists. Soon, Diarmuid Crowley sent us a sketch of the proof of this conjecture. Later, Alexey Volovikov pointed out to us that Theorem 2.1 follows easily from [1, Theorem 17.6].

Download English Version:

https://daneshyari.com/en/article/8904128

Download Persian Version:

https://daneshyari.com/article/8904128

<u>Daneshyari.com</u>