

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Dually properties and cardinal inequalities

Wei-Feng Xuan a,*, Yan-Kui Song b

- ^a College of Science, Nanjing Audit University, Nanjing, 210093, China
- ^b Institute of Mathematics, School of Mathematical Science, Nanjing Normal University, Nanjing, 210046, China

ARTICLE INFO

Article history: Received 28 June 2017 Received in revised form 9 November 2017 Accepted 9 November 2017 Available online 13 November 2017

MSC: primary 54H11, 54C10 secondary 54D20, 54E35

Keywords: Dually CCC Dually DCCC Weakly Lindelöf Extent Rank 2-diagonal G_{δ} -diagonal Cardinal

ABSTRACT

In this paper, we prove that DCCC is self-dual with respect to neighborhood assignments. Some related results on dually CCC (or dually DCCC) spaces are also obtained. Moreover, we prove that the cardinality of a dually CCC space X is at most 2^{ω} if X satisfies one of the following conditions: (1) X has a rank 2-diagonal; (2) X is first countable and has a G_{δ} -diagonal; (3) X is first countable and perfect. Finally, we prove that the extent of a first countable dually CCC space is at most 2^{ω}

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The notation of dually property was introduced by J. van Mill et al. in [9] and studied in [2], [5] and [3], which is a development of an idea of E. van Douwen used to define D-spaces. A neighborhood assignment for a space (X, τ) is a function $\phi: X \to \tau$ with $x \in \phi(x)$ for every $x \in X$. A set $Y \subset X$ is a kernel of ϕ if $\phi(Y) = \{\phi(y) : y \in Y\}$ covers X. Given a property (or a class) \mathcal{P} , the class \mathcal{P}^* dual to \mathcal{P} (with respect to neighborhood assignments) consists of spaces X such that for any neighborhood assignment ϕ on X, there is $Y \subset X$ with property \mathcal{P} and $\phi(Y) = \{\phi(y) : y \in Y\}$ covers X. The spaces from \mathcal{P}^* are called dually \mathcal{P} . Let us recall some other definitions.

E-mail addresses: wfxuan@nau.edu.cn (W.-F. Xuan), songyankui@njnu.edu.cn (Y.-K. Song).

^{*} Corresponding author.

Definition 1.1. A space X has countable chain condition (CCC for short) if every disjoint family of non-empty open sets of X is countable.

Definition 1.2. A space X has discrete countable chain condition (DCCC for short) if every discrete family of non-empty open sets of X is countable.

In Section 3, we prove that DCCC is self-dual with respect to neighborhood assignments (Proposition 3.1). By using this result, we show that if \mathcal{P} is a property (or a class) lying between CCC and DCCC, then in the class of perfectly normal spaces \mathcal{P} is self-dual with respect to neighborhood assignments (Proposition 3.3). We also prove that if X is a weakly ω_1 -collectionwise Hausdorff and dually CCC space then $e(X) \leq \omega$ (Proposition 3.6). In Section 4, we prove that the cardinality of a dually CCC space X is at most 2^{ω} if X satisfies one of the following conditions: (1) X has a rank 2-diagonal (Theorem 4.5); (2) X is first countable and has a G_{δ} -diagonal (Theorem 4.8); (3) X is first countable and perfect (Proposition 4.7). Finally, we prove that the extent of a first countable dually CCC space is at most 2^{ω} (Theorem 4.11).

2. Notation and terminology

All spaces are assumed to be Hausdorff unless otherwise stated.

We write ω for the first infinite cardinal, ω_1 the first uncountable cardinal and 2^{ω} for the cardinality of the continuum.

Definition 2.1. A space X is said to be weakly Lindelöf if every open cover \mathcal{U} of X contains a countable subfamily $\mathcal{V} \subset \mathcal{U}$ such that $\bigcup \mathcal{V}$ is dense in X.

Clearly, the property of being weakly Lindelöf lies between CCC and DCCC.

Example 2.2. (1) The space ω_1 with the order topology is countably compact, so it is DCCC. But the open cover $\mathcal{U} = \{[0, \alpha] : \alpha < \omega_1\}$ of ω_1 witnesses that ω_1 is not weakly Lindelöf. (2) The space $(\omega_1 + 1)$ with the order topology is compact (and hence, weakly Lindelöf), which is not CCC.

Definition 2.3. The *extent* of a space X, denoted by e(X), is the supremum of the cardinalities of closed discrete subsets of X.

Definition 2.4. A space X is called *perfect* if every closed subset of X is a G_{δ} -set.

Note that a space is called perfectly normal if and only if it is normal and perfect.

Definition 2.5. If X is a space and $A \subset X$, say that a family \mathcal{U} is an *open expansion* of A if $\mathcal{U} = \{U_a : a \in A\}$ and $U_a \in \tau(a, X)$ for any $a \in A$.

Definition 2.6. A space X is weakly ω_1 -collectionwise Hausdorff if for any closed discrete set $D \subset X$ with $|D| = \omega_1$ there exists a set $E \subset D$ such that $|E| = \omega_1$ and E has a disjoint open expansion.

All notations and terminology not explained here are given in [6].

3. Dually DCCC and dually CCC

It was shown in [5] that there exist dually separable spaces which are not weakly Lindelöf. Therefore separability, CCC and weak Lindelöfness are not self-dual with respect to neighborhood assignments. But in

Download English Version:

https://daneshyari.com/en/article/8904191

Download Persian Version:

https://daneshyari.com/article/8904191

<u>Daneshyari.com</u>