
Annals of Pure and Applied Logic 169 (2018) 637–655

Contents lists available at ScienceDirect

Annals of Pure and Applied Logic

www.elsevier.com/locate/apal

From realizability to induction via dependent intersection

Aaron Stump
Computer Science, MacLean Hall, The University of Iowa, Iowa City, IA 52242, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 October 2016
Received in revised form 8 January 
2018
Accepted 7 March 2018
Available online 13 March 2018

MSC:
03B15
03B40
68N18
68N30

Keywords:
Extrinsic typing
Lambda encodings
Derivable induction
Internalized realizability

In this paper, it is shown that induction is derivable in a type-assignment 
formulation of the second-order dependent type theory λP2, extended with the 
implicit product type of Miquel, dependent intersection type of Kopylov, and a built-
in equality type. The crucial idea is to use dependent intersections to internalize a 
result of Leivant’s showing that Church-encoded data may be seen as realizing their 
own type correctness statements, under the Curry–Howard isomorphism.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Constructive type theory has been proposed as a foundation for constructive mathematics, and has found 
numerous applications in Computer Science, thanks to the Curry–Howard correspondence between construc-
tive logic and pure functional programming [29,25,13]. Pure Type Systems (PTSs) are one formalism for 
constructive type theory, based on pure lambda calculus [6]. PTSs have very compact syntax, reduction 
semantics, and typing rules, which is appealing from a foundational and metatheoretic perspective. Un-
fortunately, PTSs by themselves have not been found suitable as a true foundation for constructive type 
theory in practice, due to the lack of inductive types. At the introduction of the Calculus of Constructions 
(CC), an important impredicative PTS, induction was lacking [11]. This led the inventors of CC and their 
collaborators to extend the theory with a primitive notion of inductive types, resulting in the Calculus 
of Inductive Constructions (CIC), which is the core formalism of the prominent Coq computer-proof soft-

E-mail address: aaron -stump @uiowa .edu.

https://doi.org/10.1016/j.apal.2018.03.002
0168-0072/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.apal.2018.03.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/apal
mailto:aaron-stump@uiowa.edu
https://doi.org/10.1016/j.apal.2018.03.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apal.2018.03.002&domain=pdf


638 A. Stump / Annals of Pure and Applied Logic 169 (2018) 637–655

ware [45,46,35,12]. In 2001, this skepticism about induction in PTSs was solidified when Geuvers proved 
that induction is not derivable in second-order dependent type theory (λP2), a subsystem of CC [20].

The adoption, in CIC and Coq, of a system for declaring primitive datatypes solved the problem of 
induction, and hence allowed formalization of a variety of results in Mathematics and Computer Science. 
A notable example among these is a Coq proof of the Four Color Theorem, which, unlike the theorem’s 
original computer proof, does not depend on unverified programs for checking a large of number of spe-
cial cases [23,4]. Thanks to the Curry–Howard isomorphism, such programs can be written and, crucially, 
proved sound within the type theory. So the addition of primitive datatypes opened up the possibility of 
formalizing complex mathematical results in type theory, that was lacking in pure CC. Other type theories 
provide mechanisms for defining inductive types. In Automath, for example, inductive types are defined 
axiomatically, simply by writing down constructors and asserting that induction holds [14]. In Martin-Löf 
type theory, one can use W-types to define inductive types, thus avoiding the need to add axioms to the 
theory for each new type; rather, the theory is extended once, with a single set of axioms for W-types [30]. 
Nevertheless, in all these cases, the pure type-theoretic core must be extended with additional operations, 
at both term and type level, to represent inductive types. At the term level, this necessitates additions to 
the usual proof of confluence of reduction of terms. In all cases, the resulting theory has now additional 
machinery requiring nontrivial metatheoretic analysis.

In this paper, we present an extension of a type-assignment formulation of λP2, in which induction 
is derivable, indeed in two slightly different ways. The extension does not in any direct way correspond 
simply to adding primitive inductive types or induction principles. Rather, the extension strengthens the 
expressiveness of the dependent typing of λP2, to take advantage of the computational power that is already 
present in impredicative type theory. The extension is with three constructs, all somewhat exotic but none 
new. The first is the implicit product ∀ x : A. B of Miquel, which allows one to generalize x of type A
without introducing a λ-abstraction at the term level [32]. Second is the dependent intersection type of 
Kopylov [26]. Intersection types have been studied for many years in theoretical Computer Science, due to 
their strong connection with normalization properties (see [7] for a magisterial presentation). If a term t can 
be assigned types A and B, then it can also be assigned the type A ∩B. With dependent intersections, this 
is strengthened to: if a term t can be assigned types A and [t/x]B (the substitution of t for x in B), then it 
can also be assigned the type x : A ∩ B. In this paper, we will use the prefix notation ι x :A. B, instead of 
Kopylov’s x : A ∩ B. The third construct in the extension is a primitive equality type, allowing expression 
of equality between terms x and y both of some common type A. While all three constructs are necessary 
for the derivations given of induction, the dependent intersections are most central to the construction, and 
so we will denote the resulting system ιλP2.

For nontrivial intersection types to be inhabited, we must work in a Curry-style (sometimes also called 
extrinsic) type theory, where we assign types to pure lambda terms. In such a theory, the same term can be 
assigned multiple inequivalent types. For example, assuming inequivalent types Bool and Nat, the term λ x. x
may be assigned the types Bool → Bool and Nat → Nat. Church-style (also called intrinsic) type theories 
usually satisfy unicity of typing, by design: a given term has at most one type, modulo type equivalence. In 
the ιλP2 type theory we consider in this paper, the terms are only the terms of pure lambda calculus; i.e., 
variables, applications, and lambda abstractions. So we see that unlike the other approaches to inductive 
types mentioned above, the approach proposed here requires no additional constructs at the term level: 
terms remain just those of pure lambda calculus. We thus have a solution to the problem of induction in 
pure type theory (i.e., type theory whose terms are just the pure lambda-calculus terms). Of course, we 
must make some addition at the type level, or be blocked from deriving induction by Geuvers’s result.

The centrality of dependent intersection for induction in ιλP2 is due to its role in internalizing a crucial 
realizability result of Leivant [28]. He observed that the proofs that data encoded as pure lambda terms 
using the well-known Church encoding satisfy their typing laws can be identified with those data themselves. 
In other words, Church-encoded numbers realize their own typings. This remarkable observation is the key 



Download English Version:

https://daneshyari.com/en/article/8904286

Download Persian Version:

https://daneshyari.com/article/8904286

Daneshyari.com

https://daneshyari.com/en/article/8904286
https://daneshyari.com/article/8904286
https://daneshyari.com

