On Fibonacci and Lucas sequences modulo a prime and primality testing

Dorin Andrica ${ }^{\text {a }}$, Vlad Crişan ${ }^{\text {b }}{ }^{*}$, FAWZI Al-ThuKair ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Mathematics, " Babeş-Bolyai" University, Cluj Napoca, Mihail Kogalniceanu Street 1, Cluj-Napoca, Romania
${ }^{\mathrm{b}}$ Department of Mathematics, University of Göttingen, Bunsenstraße 3-5, Göttingen, Germany
${ }^{\mathrm{c}}$ Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

Received 20 March 2017; accepted 20 June 2017
Available online xxxx

Abstract

We prove two properties regarding the Fibonacci and Lucas Sequences modulo a prime and use these to generalize the well-known property $p \left\lvert\, F_{p-\left(\frac{p}{5}\right)}\right.$. We then discuss these results in the context of primality testing.

Keywords: Fibonacci and Lucas sequences; Legendre symbol

2010 Mathematics Subject Classification: 11A51; 11B39; 11B50

1. Introduction

The Fibonacci and Lucas sequences have been a topic of intensive investigation ever since they were introduced. Despite the huge amount of results that have been proved, they still present difficult and interesting problems which occupy the minds of mathematicians. In the

[^0]

[^1]present article, we focus on discussing the properties of the two sequences when they are reduced modulo a prime.

Recall that the Fibonacci sequence $\left(F_{n}\right)_{n \geq 0}$ is defined by

$$
F_{0}=0, F_{1}=1, \quad \text { and } \quad F_{n+1}=F_{n}+F_{n-1}, \quad \text { for } \quad n \geq 1,
$$

while the Lucas sequence $\left(L_{n}\right)_{n \geq 0}$ is defined by:

$$
L_{0}=2, L_{1}=1, \quad \text { and } \quad L_{n+1}=L_{n}+L_{n-1}, \quad \text { for } \quad n \geq 1
$$

The main result of the paper is Theorem 1, which generalizes the well-known property $p \left\lvert\, F_{p-\left(\frac{p}{5}\right)}\right.$ to showing that $p \left\lvert\, F_{k p-\left(\frac{p}{5}\right)}-F_{k-1}\right.$, where $\left(\frac{p}{5}\right)$ denotes the Legendre symbol. The equivalent result for the Lucas numbers is also derived as part of the same theorem. Results of similar flavor were previously derived in [8], Lemma 6 and in [7].

As a consequence of our main result, we generalize the notion of a Fibonacci pseudoprime and discuss its role in primality testing. This is achieved in Proposition 1 and in the remarks following it.

2. A KEY LEMMA

In this section we prove by elementary means an auxiliary lemma from which we will deduce our main result in the next section. Recall the Binet's formulas for F_{n} and L_{n} :

$$
\begin{aligned}
& F_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right] \\
& L_{n}=\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\left(\frac{1-\sqrt{5}}{2}\right)^{n}
\end{aligned}
$$

These formulas can be extended to negative integers n in a natural way. We have $F_{-n}=$ $(-1)^{n-1} F_{n}$ and $L_{-n}=(-1)^{n} L_{n}$, for all n.

Our auxiliary result is the following:
Lemma 1. Let p be an odd prime, k a positive integer, and r an arbitrary integer. The following relations hold:

$$
\begin{equation*}
2 F_{k p+r} \equiv\left(\frac{p}{5}\right) F_{k} L_{r}+F_{r} L_{k} \quad(\bmod p) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
2 L_{k p+r} \equiv 5\left(\frac{p}{5}\right) F_{k} F_{r}+L_{k} L_{r} \quad(\bmod p) \tag{2}
\end{equation*}
$$

where $\left(\frac{p}{5}\right)$ is the Legendre's symbol.
Proof. We shall prove (1) directly from the definition. Write $(1+\sqrt{5})^{s}=a_{s}+b_{s} \sqrt{5}$, where a_{s} and b_{s} are positive integers, $s=0,1, \ldots$ By Binet's formula, we have

$$
\begin{aligned}
F_{k p+r} & =\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{k p+r}-\left(\frac{1-\sqrt{5}}{2}\right)^{k p+r}\right] \\
& =\frac{1}{2^{k p+r} \sqrt{5}}\left[\left(a_{k}+b_{k} \sqrt{5}\right)^{p}\left(a_{r}+b_{r} \sqrt{5}\right)-\left(a_{k}-b_{k} \sqrt{5}\right)^{p}\left(a_{r}-b_{r} \sqrt{5}\right)\right]
\end{aligned}
$$

https://daneshyari.com/en/article/8905214

Download Persian Version:

https://daneshyari.com/article/8905214

Daneshyari.com

[^0]: Peer review under responsibility of King Saud University.

 * Corresponding author.

 E-mail addresses: dandrica@math.ubbcluj.ro (D. Andrica), vlad.crisan@mathematik.uni-goettingen.de (V. Crişan), thukair@ksu.edu.sa (F. Al-Thukair).
 Peer review under responsibility of King Saud University.

[^1]: http://dx.doi.org/10.1016/j.ajmsc.2017.06.002
 1319-5166/© 2017 Production and Hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

