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Abstract. We prove two properties regarding the Fibonacci and Lucas Sequences modulo
a prime and use these to generalize the well-known property p | Fp−

( p
5
). We then discuss

these results in the context of primality testing.
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1. INTRODUCTION

The Fibonacci and Lucas sequences have been a topic of intensive investigation ever since
they were introduced. Despite the huge amount of results that have been proved, they still
present difficult and interesting problems which occupy the minds of mathematicians. In the
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present article, we focus on discussing the properties of the two sequences when they are
reduced modulo a prime.

Recall that the Fibonacci sequence (Fn)n≥0 is defined by

F0 = 0, F1 = 1, and Fn+1 = Fn + Fn−1, for n ≥ 1,

while the Lucas sequence (Ln)n≥0 is defined by:

L0 = 2, L1 = 1, and Ln+1 = Ln + Ln−1, for n ≥ 1.

The main result of the paper is Theorem 1, which generalizes the well-known property
p | Fp−( p

5 ) to showing that p | Fkp−( p
5 ) − Fk−1, where

( p
5

)
denotes the Legendre symbol.

The equivalent result for the Lucas numbers is also derived as part of the same theorem.
Results of similar flavor were previously derived in [8], Lemma 6 and in [7].

As a consequence of our main result, we generalize the notion of a Fibonacci pseudoprime
and discuss its role in primality testing. This is achieved in Proposition 1 and in the remarks
following it.

2. A KEY LEMMA

In this section we prove by elementary means an auxiliary lemma from which we will
deduce our main result in the next section. Recall the Binet’s formulas for Fn and Ln:
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,
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)n

.

These formulas can be extended to negative integers n in a natural way. We have F−n =

(−1)n−1 Fn and L−n = (−1)n Ln , for all n.
Our auxiliary result is the following:

Lemma 1. Let p be an odd prime, k a positive integer, and r an arbitrary integer. The
following relations hold:

2Fkp+r ≡

( p
5

)
Fk Lr + Fr Lk (mod p) (1)

and

2Lkp+r ≡ 5
( p

5

)
Fk Fr + Lk Lr (mod p), (2)

where ( p
5 ) is the Legendre’s symbol.

Proof. We shall prove (1) directly from the definition. Write (1 +
√

5)s
= as + bs

√
5, where

as and bs are positive integers, s = 0, 1, . . .. By Binet’s formula, we have
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