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RESUME

Nous expliquons, pour les variétés grasmanniennes, comment la dualité entre les polytopes
de Gelfand-Tsetlin et les polytopes de Feigin—Fourier-Littelman-Vinberg émerge dans dif-
férentes structures positives.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Plabic graphs (planar bicoloured graphs) were introduced by Postnikov [8] to parametrize cells in the totally non-negative
(TNN) Grassmannians (Grg ,(R))>o. These graphs are drawn inside a disk with boundary vertices labelled by 1,2,...,nin a
fixed orientation and internal vertices coloured black and white. For a reduced plabic graph G corresponding to the top cell
in the TNN-Grassmannian (Gry—g n(R))>0, Rietsch and Williams [10] constructed a family of polytopes for positive integers
r as Newton-Okounkov bodies [5,7] associated with the line bundle r € Z = Pic(Grp_k n(C)).

When the plabic graph G := ,genc is chosen as in [10] (see Section 4.2), the corresponding Newton-Okounkov body NOg

is unimodularly equivalent to the Gelfand-Tsetlin polytope GT:z—k,n'

The Newton-Okounkov body is by definition a closed convex hull of points; even when it is a polytope, to read off
its defining inequalities is a hard problem. In [10], the authors used mirror symmetry of Grassmannians to obtain these
inequalities from the tropicalization of the super-potential on an open set of the mirror Grassmannian arising from the
Landau-Ginzburg model. By applying this symmetry, they give explicit defining inequalities of NOg.

Lattice points in Gelfand-Tsetlin polytopes parametrize the bases of finite-dimensional irreducible representations of the
Lie algebra sl,. Motivated by a conjecture of Vinberg, another family of polytopes, called FFLV polytopes, is found by Feigin,
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the second author, and Littelmann [3], whose lattice points also parametrize the bases of finite- dimensional irreducible
representations of sl,.

For a plabic graph G, its mirror GV is defined by swapping the black/white colouring of internal vertices in G. When the
plabic graph G corresponds to the top cell in (Gry—k ;(R))>0, G¥ parametrizes the top cell in (Gry ,(R))>0.

Theorem 1. The Newton-Okounkov body NOgv is unimodularly equivalent to FFLV] (see Section 4.1 for definition).

k.,n

Another way to relate Gelfand-Tsetlin polytopes to FFLV polytopes is via a connection between the corresponding clusters

in different cluster algebras. Each reduced plabic graph G gives a cluster C consisting of Pliicker coordinates Ay, ..., Ay,
where [4, ..., I are some (n — k)-element subsets of [n] ={1,2,...,n}.
For I C [n], let I denote its complement. Then the set ' = {A,g, ..., Apc } is a cluster for Gry n(C), corresponding to a

plabic graph GV.
Corollary 1. The Newton-Okounkov body NOgv is unimodularly equivalent to FFLV,l,n.

2. Plabic graphs
We recall the definition and basic properties of plabic graphs, following [8,10].

Definition 1. A plabic graph is an undirected planar graph G satisfying:

(1) G is embedded in a closed disk and considered up to homotopy;

(2) G has n vertices on the boundary of the disk, called boundary vertices, which are labelled clockwise by 1,2,...,n;
(3) all other vertices of G are strictly inside the disk, they are called internal vertices and coloured in black and white;
(4) each boundary vertex is incident to a single edge.

In [8] (see also [10]), there are three local moves defined on plabic graphs: gluing two vertices of the same colour,
removing redundant vertices, and mutating a square. For a plabic graph G, let F(G) denote the set of its faces, which is
invariant under the local moves.

Definition 2. A plabic graph G is called reduced if there are no parallel edges ——e——0—— after applying any sequences
of local moves.

Definition 3. Let G be a reduced plabic graph. The trip T; starting from a boundary vertex i is the path going through the
edges of G, obeying the following rules:

(1) at each internal black vertex, the path turns to the rightmost direction;
(2) at each internal white vertex, the path turns to the leftmost direction.

The trip T; ends at a boundary vertex m(i). We associate in this way a trip permutation ng := (n(1),...,n(n)) with G. Let
Tn=m—k+1,n—k+2,...,n,1,2,....,n —k). The face labelling of G is the injective map Ag : F(G) — (lZJ) (the set of
k-element subsets of {1,...,n}) defined as follows: for a face F € F(G), Ag(F) consists of those i such that F is to the left
of the trip T;. We set Vg := Ag(F(G)).

See Fig. 1 for an example.
3. Polytopes arising from plabic graphs
We associate polytopes with plabic graphs following [10]. Let K=R or C be the base field.
3.1. Positive Grassmannians
For 0 < k < n, let Maty, denote the set of k x n-matrices with entries in K. For J € ([Z]) and A € Maty ,, let Aj(A)

denote the maximal minor of A corresponding to columns in J.
Let Gry, be the Grassmann variety embedded into PN~! via the Pliicker embedding where N = (Z) The minors {Aj |

J e (“,:J)} give the Pliicker coordinates on Gry,. When the base field is R, the totally non-negative (resp. totally positive)
Grassmannian (Gry ,(R))>o consists of those elements in Gr , having non-negative (resp. positive) Pliicker coordinates.
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