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In this note, we are interested in entire solutions to the semilinear biharmonic equation

�2u = −u−p, u > 0 in R
N ,

where p > 0 and N ≥ 3. In particular, the stability outside a compact set of the entire radial 
solutions will be completely studied, which resolves the remaining case in [5].

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans cette note, on s’intéresse aux solutions radiales entières de l’équation semilinéaire 
biharmonique

�2u = −u−p, u > 0 dans RN ,

où p > 0 et N ≥ 3. En particulier, on étudie la stabilité en dehors d’un compact des 
solutions radiales entières, et on résout un cas ouvert dans [5].

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In this note, we are interested in entire radial solutions to the biharmonic equation

�2u = −u−p, u > 0 in R
N (1.1)

where p > 0 and N ≥ 3.
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Recently, the fourth-order equations have attracted the interest of many researchers. In particular, the existence, mul-
tiplicity, stability, and qualitative properties of solutions to equation (1.1) are studied in many works, especially for radial 
solutions. It has been proved in [6] that, if 0 < p ≤ 1, the equation (1.1) admits no entire smooth solution. It is showed in 
[4,7] that, for any p > 1, there exist radial solutions to (1.1).

Definition 1. A solution u to (1.1) is said stable in � ⊆ R
N if there holds

∫
�

|�φ|2dx − p

∫
�

u−p−1φ2dx ≥ 0 for any φ ∈ C∞
0 (�).

Moreover, a solution u to (1.1) is said stable outside a compact set K if u is stable in RN \ K . For simplicity, we say also 
that u is stable if � = R

N .

We consider the following initial value problem
⎧⎪⎨
⎪⎩

�2u = −u−p for r ∈ [0, Rα,β)

u′(0) = u′′′(0) = 0,

u(0) = α, �u(0) = β;
(1.2)

for any α, β ∈ R, we denote by uα,β the (local) solution to (1.2) and by [0, Rα,β) the maximal interval of existence. Notice 
that the equation (1.2) is invariant under the scaling transformation

uλ(x) = λ
− 4

p+1 u(λx), λ > 0.

Therefore, we need only to consider the case α = 1. We will denote u1,β by uβ . Let p > 1, it is known from [3,5,7] that

• there is no global solution to (1.2) if N ≤ 2;
• for N ≥ 3, there exists β0 > 0 depending on N such that the solution to (1.2) is globally defined if and only if β ≥ β0. 

Furthermore, limr→∞ �uβ ≥ 0 and limr→∞ �uβ = 0 if and only if β = β0;
• for N ≥ 3, any entire solution uβ is stable outside a compact set if β > β0;
• for N = 4, uβ0 is unstable outside every compact set;
• for 5 ≤ N ≤ 12, there exists a critical value pN > 1 (see below for the precise definition) such that, if 1 < p ≤ pN , uβ is 

stable for every β ≥ β0, while for p > pN , there exists β1 > β0 such that uβ is stable if and only if β ≥ β1, and uβ0 is 
unstable outside every compact set;

• for N ≥ 13 and any p > 1, uβ is stable for every β ≥ β0.

Moreover, Warnault [8] proved that equation (1.1) admits no stable solution (radial no not) for N ≤ 4. So it remains to 
consider the eventual stability outside a compact set for N = 3 and β = β0.

The stability property of entire radial solutions is closely related to their asymptotic behaviors. Let us recall the asymp-
totic behaviors showed in [2,3,5]. For N = 3 and β = β0, the following hold:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

lim
r→∞ uβ0(r)r

−1 = � > 0, if p > 3;
lim

r→∞ uβ0(r)r
−1(ln r)−

1
4 = 4

√
2, if p = 3;

lim
r→∞ uβ0(r)r

− 4
p+1 =

[
−Q 4

(
− 4

p + 1

)]− 1
p+1 =: L0, if 1 < p < 3,

(1.3)

where Q 4 is defined by

Q 4(m) := m(m + 2)(N − 2 − m)(N − 4 − m). (1.4)

Remark that equation (1.1) has a singular solution us(r) ≡ L0r
4

p+1 , if Q 4

(
− 4

p+1

)
< 0.

From [2], we know that for N = 3, there exist 3 > p+
c > pc > 1 such that, if p = pc or p = p+

c , then −p Q 4(m) = 9
16 with 

m = − 4
p+1 , and if pc < p < p+

c then −p Q 4(m) > 9
16 . For N ≥ 5, pN is the unique root of

−p Q 4

(
− 4

p + 1

)
= N2(N − 4)2

16

in (1, ∞).
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