ARTICLE IN PRESS

C. R. Acad. Sci. Paris, Ser. I ••• (••••) •••-••

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

CRASS1:6067

www.sciencedirect.com

Group theory

Large subgroups in finite groups

Grands sous-groupes dans les groupes finis

Stefanos Aivazidis^{a, 1}, Thomas W. Müller^b

^a Einstein Institute of Mathematics, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 9190401, Israel ^b School of Mathematical Sciences, Queen Mary & Westfield College, University of London, Mile End Road, London E1 4NS, United Kingdom

ARTICLE INFO

Article history: Received 18 October 2017 Accepted 1 February 2018 Available online xxxx

Presented by the Editorial Board

ABSTRACT

Following Isaacs (see [6, p. 94]), we call a normal subgroup N of a finite group G large, if $C_G(N) \le N$, so that N has bounded index in G. Our principal aim here is to establish some general results for systematically producing large subgroups in finite groups (see Theorems A and C). We also consider the more specialised problems of finding large (non-abelian) nilpotent as well as abelian subgroups in soluble groups.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Suivant la terminologie introduite par Isaacs (voir [6], p. 94), nous disons qu'un sousgroupe distingué N d'un groupe fini G est grand si $\mathbf{C}_G(N) \leq N$, de sorte que N est d'indice borné dans G. Notre but principal est d'établir des résultats permettant de produire de façon systématique des grands sous-groupes dans les groupes finis (voir les théorèmes A et C). Nous considérons également les problèmes plus particuliers qui se posent pour trouver de grands sous-groupes nilpotents (non commutatifs) ainsi que de grands sousgroupes commutatifs dans les groupes résolubles.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let *G* be a finite group and suppose that *N* is a normal subgroup of *G* such that $\mathbf{C}_G(N) \leq N$. Then we call *N* a *large* subgroup of *G*. The motivation for naming such a subgroup "large" stems from the observation that if $N \leq G$, then the factor group $G/\mathbf{C}_G(N)$ is isomorphically embedded in $\mathbf{Aut}(N)$, and so $|G:\mathbf{C}_G(N)| \leq |\mathbf{Aut}(N)|$. Thus, if *N* is large, it follows that $|G:N| \leq |\mathbf{Aut}(N)|$, so that *N* has bounded index in *G*.

There are a number of examples of large subgroups in the literature. For instance, if *G* is soluble, then the (standard) Fitting subgroup $\mathbf{F}(G)$ of *G* is large. Also, if *G* is π -separable and $\mathbf{O}_{\pi'}(G) = 1$, then $\mathbf{O}_{\pi}(G)$ is large (this result is known as the Hall–Higman Lemma 1.2.3). Moreover, if *G* is any finite group, then the generalised Fitting subgroup $\mathbf{F}^*(G)$ of *G* is large.

https://doi.org/10.1016/j.crma.2018.01.020

E-mail addresses: stefanosaivazidis@gmail.com (S. Aivazidis), t.w.muller@qmul.ac.uk (T.W. Müller).

¹ Current address: Diamanti 14, Athens 18547, Greece.

¹⁶³¹⁻⁰⁷³X/ $\! \textcircled{\odot}$ 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

2

ARTICLE IN PRESS

S. Aivazidis, T.W. Müller / C. R. Acad. Sci. Paris, Ser. I ••• (••••) •••-•••

We briefly recall the definition of Bender's subgroup $\mathbf{F}^*(G)$. Call a group *G* quasi-simple, if *G* is perfect and $G/\mathbf{Z}(G)$ is simple. A subnormal quasi-simple subgroup of an arbitrary group *G* is called a *component* of *G* and the *layer* of *G*, denoted by $\mathbf{E}(G)$, is the product of its components. It is known that, if *A* and *B* are components of *G*, then either A = B or [A, B] = 1. The *generalised Fitting subgroup* of *G*, denoted by $\mathbf{F}^*(G)$, is the product of $\mathbf{E}(G)$ and $\mathbf{F}(G)$.

We shall reserve fraktur symbols for classes of finite groups; in particular, \mathfrak{S} will denote the class of finite soluble groups, \mathfrak{N} the class of finite nilpotent groups, and \mathfrak{A} the class of finite abelian groups.

A formation \mathfrak{F} with the property that $G/\Phi(G) \in \mathfrak{F}$ for G finite implies $G \in \mathfrak{F}$ is called saturated. We recall that if \mathfrak{F} is a formation, then \mathfrak{F} is called *solubly saturated* provided that $G \in \mathfrak{F}$ whenever $G/\Phi(G_{\mathfrak{S}}) \in \mathfrak{F}$, where $G_{\mathfrak{S}}$ is the soluble radical of G; that is, the largest soluble normal subgroup of G. If \mathfrak{X} is a class of finite groups, then we shall write \mathfrak{X} for its extension closure; that is, the class of all (finite) groups having a subnormal series whose quotients lie in \mathfrak{X} .

2. Main results

Before establishing our main theorems (see Theorems A and C below), we need to briefly discuss some auxiliary results.

Lemma 1. Let \mathfrak{X} be a class of finite groups which is closed under taking normal subgroups and quotients. Then \mathfrak{X} , the extension closure of \mathfrak{X} (i.e. the class of poly- \mathfrak{X} groups), enjoys the same closure properties.

Proof. If \mathfrak{X} is quotient-closed then so is $\overline{\mathfrak{X}}$ by Part (vi) of [1, Prop. 5.4]. Also, a straightforward modification of the proof of Part (vii) of [1, Prop. 5.4] shows that $\overline{\mathfrak{X}}$ inherits normal-subgroup-closure from \mathfrak{X} . \Box

Lemma 2. Let \mathfrak{X} be a normal-subgroup-closed class of finite groups and let $\overline{\mathfrak{X}}$ be its extension closure. If $G \in \overline{\mathfrak{X}}$ and J is a simple subnormal subgroup of G, then $J \in \mathfrak{X}$.

Proof. Since \mathfrak{X} is closed under taking normal subgroups, a subnormal series for *G* with quotients in \mathfrak{X} can be refined to yield a composition series with the same property. Since *J* can be made the first term of a composition series for *G*, the result follows by the Jordan–Hölder theorem. \Box

Corollary 3. Let \mathfrak{X} be a class of finite groups which is closed under taking normal subgroups and direct products. If $G \in \overline{\mathfrak{X}}$ and N is a minimal normal subgroup of G, then $N \in \mathfrak{X}$.

Proof. Since *N* is a minimal normal subgroup of *G*, we have that $N \cong J \times \cdots \times J$ for some simple group *J*. In particular, *J* is subnormal in *G* and thus Lemma 2 applies to yield that $J \in \mathfrak{X}$. Now direct-product-closure of \mathfrak{X} shows that $N \in \mathfrak{X}$. \Box

We are now in a position to prove our first main result.

Theorem A. Let \mathfrak{X} be a class of finite groups which is closed under taking normal subgroups, direct products, quotients, and central extensions, and let $\overline{\mathfrak{X}}$ be the extension closure of \mathfrak{X} . Suppose that $G \in \overline{\mathfrak{X}}$, and that H is a maximal normal \mathfrak{X} -subgroup of G. Then H is large in G.

Proof. Let $G \in \overline{\mathfrak{X}}$, and let H be a maximal normal \mathfrak{X} -subgroup of G. We claim that H is large in G or, equivalently, that $\mathbf{Z}(H) = \mathbf{C}_G(H)$. Assume for a contradiction that C > Z, where $C := \mathbf{C}_G(H)$ and $Z := \mathbf{Z}(H)$.

Since *H* is a normal subgroup of *G*, so are *C* and *Z*, and thus C/Z is a non-trivial normal subgroup of G/Z. Note that $G \in \mathfrak{X}$ implies that $G/Z \in \mathfrak{X}$ by Lemma 1. Also, $C/Z \in \mathfrak{X}$, again by Lemma 1. Now put D/Z := **Soc**(C/Z). By Corollary 3, we have $D/Z \in \mathfrak{X}$ and 1 < D/Z since C/Z > 1 by hypothesis. Also, $H/Z \in \mathfrak{X}$, since \mathfrak{X} is quotient-closed. Now note that $(H/Z) \cap (D/Z) = 1$ since $Z \leq H \cap D \leq H \cap C = Z$. Since \mathfrak{X} is closed under taking direct products, it follows that $HD/Z = (H/Z) \times (D/Z) \in \mathfrak{X}$, thus central-extension-closure of \mathfrak{X} yields $HD \in \mathfrak{X}$. However, HD > H, and moreover HD is a normal subgroup of *G*, which contradicts the maximality of *H*. \Box

Our next result guarantees the existence of a variety of natural classes of finite groups that are central-extension-closed.

Proposition B. If \mathfrak{X} is a solubly saturated formation of finite groups that is closed under taking normal subgroups and such that $\mathfrak{A} \subseteq \mathfrak{X}$, then \mathfrak{X} is closed under taking central extensions.

Proof. Let *G* be a finite group, $1 < Z \leq \mathbb{Z}(G)$, and suppose that $G/Z \in \mathfrak{X}$, with \mathfrak{X} a class of finite groups as in the statement of the proposition.

First, we argue that, since *Z* is an abelian group, we can find an abelian group *Y* such that $\Phi(Y) \cong Z$. This follows from the structure theorem for abelian groups, the fact that $\Phi(C_{p^{\alpha+1}}) \cong C_{p^{\alpha}}$, and [4, Satz 6].

Now let $\Gamma = G \circ Y$ be the central product of G with Y, identifying Z with the Frattini subgroup of Y. Then $\Gamma/Z \cong (G/Z) \times (Y/Z)$, so $\Gamma/Z \in \mathfrak{X}$ since $Y/Z \in \mathfrak{A} \subseteq \mathfrak{X}$ and \mathfrak{X} is a formation thus closed under taking direct products. Also, $Z \leq \mathbb{C}$

Download English Version:

https://daneshyari.com/en/article/8905433

Download Persian Version:

https://daneshyari.com/article/8905433

Daneshyari.com