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We consider the free boundary compressible and incompressible Euler equations with 
surface tension. In both cases, we provide a priori estimates for the local existence with the 
initial velocity in H3, with the H3 condition on the density in the compressible case. An 
additional condition is required on the free boundary. Compared to the existing literature, 
both results lower the regularity of initial data for the Lagrangian Euler equation with 
surface tension.
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r é s u m é

Nous considérons les équations d’Euler compressibles et incompressibles avec frontière 
libre et tension de surface. Dans les deux cas, nous fournissons des estimations a priori
pour l’existence de solutions locales avec vitesse initiale dans H3 et la condition H3 sur 
la densité dans le cas compressible. Une condition supplémentaire est nécessaire sur la 
frontière libre. Par comparaison avec la littérature, les deux résultats abaissent la régularité 
des données initiales pour les équations d’Euler en coordonnées lagrangiennes, avec tension 
de surface.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In this note, we address the water wave problem, which has been studied extensively. Our setting is rather general: 
we consider the Euler equations with a free surface and allow initial data to have nonzero curl, i.e. the initial data is 
rotational. The domain is assumed to be of finite depth, but the results can be easily adapted to the infinite depth as well. 
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We consider both the compressible and incompressible cases; for the compressible Euler equations, we assume that the 
density is bounded from below, i.e. we consider the case of a liquid.

Our aim in this note is to announce two recent results on the local existence with non-zero surface tension. In both 
main theorems (the compressible and incompressible cases, respectively), we assume that the initial data is of H3 regularity 
in the interior. This lowers the regularity of existing results for the compressible equations. In the incompressible setting, 
our result lowers the known regularity in Lagrangian coordinates, albeit it does not improve over what has been obtained 
in Eulerian coordinates.

The history of the Euler equations with free interface is rich—we refer the reader to [2,4,5] for a more complete ac-
count. We only mention a few important works dealing with non-zero surface tension. The first general well-posedness 
result for the incompressible free-boundary Euler equations with surface tension is [2], followed by [9,10] and [3]. Earlier, 
well-posedness had been established under the assumption that the initial vorticity vanishes on the boundary [8]. For the 
compressible equations with surface tension, the first result was [1].

In the first part of the note, we address the compressible Euler equations, while in the second part we treat the incom-
pressible version.

2. Compressible case

In the Lagrangian setting, the free-surface compressible Euler equations read

R∂t vα + aμα∂μq = 0 in [0, T ) × �, (1a)

∂t R + Raμα∂μvα = 0 in [0, T ) × �, (1b)

∂ta
αβ + aαγ ∂μvγ aμβ = 0 in [0, T ) × �, (1c)

q = q(R) in [0, T ) × �, (1d)

aμα Nμq + σ |aT N|�gη
α = 0 on [0, T ) × 
1, (1e)

vμNμ = 0 on [0, T ) × 
0, (1f)

η(0, ·) = id, R(0, ·) = �0, v(0, ·)= v0. (1g)

Above, v , R , and q denote the Lagrangian velocity, density, and the pressure, respectively; N is the unit outer normal to 
∂�, a is the inverse of ∇η, σ = constant > 0 is the coefficient of surface tension, and �g is the Laplacian of the metric gij
induced on ∂�(t) by the embedding η, i.e. gij = ∂iη · ∂ jη = ∂iη

μ∂ jημ .
We consider the domain �0 ≡ � = T

2 × (0, 1). We note that using the straightening map in [7, Remark 4.2], it is easy to 
modify the approach to consider a general curved domain �′ = R

2 × (0, h(x1, x2)). Applying the change of variable in [7], 
we get

R∂t vα + aμαbβ
μ∂βq = 0

instead of (1a); here b is the cofactor inverse matrix of the straightening map. The other equations in the system (1a)–(1g)
are modified similarly. The methods outlined here then easily carry over for the new system as well, provided �′ is at least 
H5 regular.

Denoting the coordinates on � by (x1, x2, x3), we have 
1 = T
2 × {x3 = 1} as the free boundary and 
0 = T

2 × {x3 = 0}
as the stationary one. On the pressure function, we assume(

q(R)

R

)′
≥ Aq = constant > 0, (2)

which is satisfied by a large class of equations of state.
We denote by � the canonical projection, on η(
1), from the tangent bundle of η(�) to its normal bundle, which is 

given by �α
β = δα

β − gkl∂kη
α∂lηβ . We recall that initial data for (2) is required to satisfy compatibility conditions (cf. [5]). 

The following is the main result in the compressible case.

Theorem 2.1. Let v0 be a smooth vector field on � and �0 a smooth positive function on � bounded away from zero from below. 
Assume that v0 and �0 satisfy the compatibility conditions. Let q : (0, ∞) → (0, ∞) be a smooth function satisfying (2) in a neigh-
borhood of �0 . Then, there exist a T∗ > 0 and a constant C∗ , depending only on σ > 0, ‖v0‖3 , ‖v0‖3,
1 , ‖�0‖3 , ‖�0‖3,
1 , and 
‖(� div v0)�
1‖−1,
1 such that any smooth solution (v, R) to (1), with initial condition (v0, �0) and defined on the time interval 
[0, T∗), satisfies

N (t) = ‖v‖2
3 + ‖∂t v‖2

2 + ‖∂2
t v‖2

1 + ‖∂3
t v‖2

0 + ‖R‖2
3 + ‖∂t R‖2

2

+ ‖∂2
t R‖2

1 + ‖∂3
t R‖2

0 + ‖�∂∂2
t v‖2

0,
1
+ ‖�∂2∂t v‖2

0,
1
≤ C∗,

(3)

where ∂ stands for the tangential derivative.
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