
Accepted Manuscript

Ruthenium in chromite as indicator for magmatic sulfide liquid equilibration in mafic-ultramafic systems

Marek Locmelis, Marco L. Fiorentini, Stephen J. Barnes, Eero J. Hanski, Alan F. Kobussen

PII:	S0169-1368(18)30074-X
DOI:	https://doi.org/10.1016/j.oregeorev.2018.05.002
Reference:	OREGEO 2576
To appear in:	Ore Geology Reviews
Received Date:	26 January 2018
Revised Date:	24 April 2018
Accepted Date:	3 May 2018

Please cite this article as: M. Locmelis, M.L. Fiorentini, S.J. Barnes, E.J. Hanski, A.F. Kobussen, Ruthenium in chromite as indicator for magmatic sulfide liquid equilibration in mafic-ultramafic systems, *Ore Geology Reviews* (2018), doi: https://doi.org/10.1016/j.oregeorev.2018.05.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Ruthenium in chromite as indicator for magmatic sulfide liquid equilibration

in mafic-ultramafic systems

Marek Locmelis¹, Marco L. Fiorentini², Stephen J. Barnes³, Eero J. Hanski⁴, Alan F. Kobussen⁵

¹Department of Geosciences and Geological and Petroleum Engineering, Missouri University of Science & Technology, Rolla, Missouri 65409, USA

²Centre for Exploration Targeting and ARC Centre of Excellence for Core to Crust Fluid Systems, School of Earth Sciences, The University of Western Australia, Perth, Australia.

³CSIRO Earth Science and Resource Engineering, Kensington, Perth, Western Australia 6151, Australia.

⁴ Oulu Mining School, P.O. Box 3000, 90014, University of Oulu, Finland

⁵Rio Tinto Exploration, 1 Research Avenue, Bundoora VIC 3083, Australia

*Corresponding author: Marek Locmelis, email: locmelism@mst.edu

ABSTRACT

The platinum-group element ruthenium (Ru) is an important petrogenetic tracer of Earth's accretion history, core-mantle interaction, mantle evolution and the exploration for magmatic sulfide deposits. However, its geochemical behavior in mafic-ultramafic systems is still not fully understood, which limits its usefulness in the predictive modelling of geochemical systems.

To further develop the use of Ru as a petrogenetic tracer, we analyzed the Ru contents of chromites from a global sample set of komatiites, komatiitic basalts, and ferropicrites by laser ablation ICP-MS and Carius tube isotope dilution ICP-MS analysis. The Ru data are combined with full major and minor element microprobe analyses. The data show that two groups of chromite can be distinguished on the basis of their Ru contents. This bimodal distribution occurs

Download English Version:

https://daneshyari.com/en/article/8909515

Download Persian Version:

https://daneshyari.com/article/8909515

Daneshyari.com