Accepted Manuscript Copper complexation and solubility in high-temperature hydrothermal fluids: A combined study by Raman, X-ray fluorescence, and X-ray absorption spectroscopies and ab initio molecular dynamics simulations Christian Schmidt, Anke Watenphul, Sandro Jahn, Ilona Schäpan, Lea Scholten, Matthew G. Newville, Antonio Lanzirotti PII: S0009-2541(18)30349-8 DOI: doi:10.1016/j.chemgeo.2018.07.018 Reference: CHEMGE 18846 To appear in: Chemical Geology Received date: 22 February 2018 Revised date: 6 July 2018 Accepted date: 11 July 2018 Please cite this article as: Christian Schmidt, Anke Watenphul, Sandro Jahn, Ilona Schäpan, Lea Scholten, Matthew G. Newville, Antonio Lanzirotti, Copper complexation and solubility in high-temperature hydrothermal fluids: A combined study by Raman, X-ray fluorescence, and X-ray absorption spectroscopies and ab initio molecular dynamics simulations. Chemge (2018), doi:10.1016/j.chemgeo.2018.07.018 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ## **ACCEPTED MANUSCRIPT** manuscript CHEMGE11222, revision 1, June 2018 Copper complexation and solubility in high-temperature hydrothermal fluids: a combined study by Raman, X-ray fluorescence, and X-ray absorption spectroscopies and ab initio molecular dynamics simulations Christian Schmidt^{a,*}, Anke Watenphul^b, Sandro Jahn^c, Ilona Schäpan^a, Lea Scholten^{a,d}, Matthew G. Newville^e, and Antonio Lanzirotti^e ^aGFZ German Research Centre for Geosciences, Section 4.3 Chemistry and Physics of Earth Materials, Telegrafenberg, 14473 Potsdam, Germany ^bUniversity of Hamburg, Institute for Mineralogy and Petrography, Grindelallee 48, D-20146 Hamburg, Germany ^cUniversity of Cologne, Institute of Geology and Mineralogy, Zülpicher Strasse 49b, 50674 Köln, Germany ^dUniversity of Kiel, Institute of Geosciences, Ludewig-Meyn-Str. 10, 24118 Kiel, Germany ^eAdvanced Photon Source (APS), Argonne National Laboratory, Building 401, 9700 S. Cass Avenue, Argonne, Illinois 60439, U.S.A. *Corresponding author. Tel.: +49 331 288 1406; fax: +49 331 288 1402. *E-mail address*: Christian.Schmidt@gfz-potsdam.de *E-mail addresses of co-authors:* anke.watenphul@uni-hamburg.de, s.jahn@uni-koeln.de, ilona.schaepan@gfz-potsdam.de, lea.scholten@ifg.uni-kiel.de, newville@cars.uchicago.edu, lanzirotti@uchicago.edu #### **Abstract** Data for the solubility of CuS (reacting to Cu₂S), Cu, and bornite+chalcopyrite+pyrite (reacting to Cu-Fe-S solid solution) in H₂O+NaCl fluids were determined *in situ* using ### Download English Version: # https://daneshyari.com/en/article/8910118 Download Persian Version: https://daneshyari.com/article/8910118 <u>Daneshyari.com</u>