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Wedevelop a novel accurate volume integral formula for solving potentials of three dimensional (3D) direct cur-
rent resistivity problems with inhomogeneous conductivities in half-space. This new integral formula is com-
posed of the potential, the gradient of Green's function, the gradient of the potential and the anomalous
conductivity as the physical variables. First, the unstructured grids are adopted to handle inhomogeneous bodies
with complicated shapes. Then, in each anomalous tetrahedron, the potential is represented as its values at ver-
tices and the linear shape functions. Analytical expressions are developed to evaluate singular volume integrals in
the final system of linear equations when the observation sites locate in the anomalous body. Finally, two syn-
thetic models are utilized to verify the accuracy and convergence rate of our newly developed volume integral
formula and its capability of dealing with complicated models with high conductivity contrasts.
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1. Introduction

Direct current (DC) resistivity exploration technique has played a
vital role in uncovering the conductivity structures of shallow subsur-
face. Static currents are injected into underground geological structures
through source electrodes. Then, voltages are measured at potential
electrodes. Using different configurations such as pole-pole, dipole-
dipole configurations (Loke, 2000), geophysicists can calculate the ap-
parent resistivity or use inversion routines to qualitatively or quantita-
tively interpret the conductivity distributions of the shallow Earth
(Günther et al., 2006a; Seidel and Lange, 2007). Due to low cost and
high resolution, it has been widely used in different geological and geo-
physical problems such as engineering and environment geophysics
(Hauck et al., 2003; Kalscheuer et al., 2010; Rucker et al., 2010;
Demirci et al., 2012), hydro-geophysical cases (Mansoor and Slater,
2007; Coscia et al., 2011; Doetsch et al., 2012; Doetsch et al., 2013;),
archeological problems (Griffiths and Barker, 1994; Tsokas et al.,
2008) and mineral explorations (Gochioco and Urosevic, 2003;
Rucker, 2010; Yi et al., 2011).

To quantitatively invert the underground structures, DC resistivity
methods need a reliable forward modeling solver with a task to com-
pute the voltages at measuring sites for a given conductivity

distributions underground. Unfortunately, analytical expression only
exists for simple conductivity structure. For models with complicated
conductivity distributions, we have to use numerical methods to con-
duct the forward modeling. At present, there are two principal sorts of
numerical methods available for DC resistivity forward modeling,
which are the differential methods, such as finite-element methods
(Coggon, 1971; Bing and Greenhalgh, 2001; Li and Spitzer, 2002,
2005; Wu, 2003; Günther et al., 2006b; Zhou et al., 2009; Ren and
Tang, 2010, 2014; Rücker, 2011; Udphuay et al., 2011), finite-
difference (volume) methods (Dey and Morrison, 1979; Zhang et al.,
1994; Spitzer, 1995; Loke and Barker, 1996; Wang et al., 2000), and
the integral methods. The differential approaches have the capability
of dealing with arbitrarily complicated conductivity structures and
nowhave been largely adopted in geophysical communities. In contrast,
the integral approaches only need to discretize the anomalous conduc-
tivity structures instead of the entire underground conductivity struc-
tures. In addition, the integral methods generally are based on semi-
analytical formulae. Its solutions offer highly accurate solutions than
other differential methods. As the integral solutions can be taken as ref-
erence solutions to verify the differential methods, therefore, it is still of
great values to develop more accurate integral solutions.

Over the past five decades, three types of integral formulaewere de-
veloped for DC resistivity problems, one kind of integral formula using
charge-density as the physical variable (Alfano, 1959; Dieter et al.,
1969; Pratt, 1972; Snyder, 1976; Daniels, 1977; Spiegel et al., 1980;
Eskola et al., 1984; Das and Parasnis, 1987; Li and Oldenburg, 1991;
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Eskola and Hongisto, 1997; Boulanger and Chouteau, 2005), one kind of
integral formula using electric field or current-density (Eskola, 1979;
Okabe, 1981; Eloranta, 1984; Eloranta, 1988; Beard et al., 1996; Li and
Uren, 1997; Méndezdelgado et al., 1999) and the one using potential
(Phillips, 1934; Lee, 1975; Hvoždara and Petr, 1982; Hvoždara and
Petr, 1983; Eloranta, 1986; Poirmeur and Vasseur, 1988; Hvoždara,
1994; Hvoždara and Kaikkonen, 1994, 1996; Hvoždara and Kaikkonen,
1998; Xu et al., 1998; Xu et al., 1988; Ma, 2002; Ciulli et al., 2004). The
integral formula using potential as the physical variable has better sta-
bility, faster convergences and is more effective to deal with high con-
ductivity contrast (Eloranta, 1986). However, most integral formulae
using potential were expressed in form of surface integral formula. Al-
though reduction from three dimensions to two dimensions can signif-
icantly reduce the computational cost, it is more valuable to develop
volume integral formulae to solve complicated 3D DC resistivity prob-
lems due to its flexibility of dealing with complicated structures. The
first attempt of 3D direct current resistivity volume integral formula
was conducted by Hvoždara and Kaikkonen (1998) for the case of inho-
mogeneous conductivities buried in a half-space. Because the gradient
of anomalous conductivity and the potential were involved in this
volume integral formula, the constant approximation of the unknown
potential in each element should be chosen and its singular volume in-
tegral was transformed into the surface integral which only can be eval-
uated using numerical quadrature approaches. They lead that the
accuracies of numerical solutions were decreased.

To overcome the possible accuracy lose in the above volume integral
formula for direct current resistivitymodeling, in this study, we develop
a new alternative volume integral formula in which the gradient of the
anomalous conductivity is transferred onto the potential. Therefore, a
constant conductivity value can be adopted in each element so that
the singular Green's function volume integrals have simple expressions.
In addition, we present a set of new closed-form solutions for these sin-
gular volume integrals over tetrahedral bodieswhich enhance the capa-
bility of our new algorithm to deal with complicated anomalous
conductivity targets under the ground. Furthermore, linear shape func-
tions are used to represent the unknown potentials which are assigned
to nodes of the tetrahedral grids. Unlike the constant shape functions
which were used in previous studies, employing of the linear shape
functions can not only increase the numerical accuracy of solutions
but also can dramatically reduce the computation cost on the same
grid. It is because that the number of nodes is generally much less
than the number of elements for a discretized grid of the anomalous
conductivity targets.

Two synthetic complicatedmodels are used to verify the accuracy of
our newly developed volume integral formulae. Excellent agreements
are obtained among our solutions and other published analytic solu-
tions and finite-element numerical solutions.

2. Problem statement

2.1. Boundary value problem

The boundary value problem for total potential U in DC resistivity
problems is defined as follows:

∇ � σ∇U ¼ −2Iδ r−rAð Þ inΩ; ð1Þ

∇U � n̂ ¼ 0 on Γ0; ð2Þ

U ¼ 0 on Γ1; ð3Þ

where σ is the conductivity in the earth Ω, ris an arbitrary point in
Ω, rA denotes the source electrode where a direct current with an
amplitude of I is injected. Symbol Γ0 denotes the air-earth interface, Γ1
is the infinite boundary and n̂ is the outgoing normal vector on surfaces
Γ0 ∪ Γ1 = ∂Ω. The geoelectric configuration is shown in Fig. 1. In Fig. 1,

a right-handed coordinate system is built up on Γ0(z=0) with positive

z-axis downward. The abnormal regions are defined asΩa ¼
Xn
i¼1

Ωi n is

the number of abnormal bodies. The anomalous conductivity is σa. The
background conductivity is denoted as σ0. The conductivities of the
anomalies are σi = σ0 + σa (i=1,…,n).

Firstly, the total potential U is decomposed into two parts:

U ¼ Up þ Us; ð4Þ

where Up denotes the primary potential generated by direct current I
over the background model with conductivity distribution σ0 and Us is
the secondary potential. The primary potential Up satisfies:

∇ � σ0∇Up ¼ −2Iδ r−rAð Þ inΩ; ð5Þ

with boundary conditions:

∇Up � n̂ ¼ 0 on Γ0; ð6Þ

Up ¼ 0 on Γ1: ð7Þ

Subtracting Eq. (1) by Eq. (5) and then substituting equation σ=
σ0 + σa, we have:

σ0∇
2 U−Up
� �þ ∇ � σa∇U ¼ 0 inΩ; ð8Þ

where σa =0 in Ω0.
Substituting Eq. (4) into Eq. (8), we get:

∇2Us ¼ −
∇ � σa∇U

σ0
¼ −

∇ � ja
σ0

in Ω:θ ð9Þ

Using Eqs. (2)–(3) and Eqs. (6)–(7), we get:

∇Us � n̂ ¼ 0 on Γ0; ð10Þ

Us ¼ 0 on Γ1: ð11Þ

Fig. 1. Illustration of the geoelectric configuration. A right-handed Cartesian coordinate
system is set up, the x- and y-axes are horizontal and the z-axis is downward with
the origin on the ground surface. Symbol Ω denotes the Earth which consists
of a background region Ω0 with background conductivity σ0 and a set of abnormal

regions Ωa ¼
Xn
i¼1

Ωi with anomalous conductivity σa. σi denotes the conductivity in Ωi,

satisfying σi = σ0 + σa. Symbol Γ0 denotes the air-earth interface, Γ1 denotes the infinite
boundary and n̂ is the outgoing normal vector on surfaces Γ0 ∪ Γ1 = ∂Ω. rA denotes the
source electrode where a direct current with an amplitude of Iis injected.
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