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The attenuation of randomnoise is important for improving the signal to noise ratio (SNR). However, the precon-
dition formost conventional denoisingmethods is that thenoisy datamust be sampled on a uniformgrid,making
the conventional methods unsuitable for non-uniformly sampled data. In this paper, a denoisingmethod capable
of regularizing the noisy data from a non-uniform grid to a specified uniform grid is proposed. Firstly, the
denoising method is performed for every time slice extracted from the 3D noisy data along the source and re-
ceiver directions, then the 2D non-equispaced fast Fourier transform (NFFT) is introduced in the conventional
fast discrete curvelet transform (FDCT). The non-equispaced fast discrete curvelet transform (NFDCT) can be
achieved based on the regularized inversion of an operator that links the uniformly sampled curvelet coefficients
to the non-uniformly sampled noisy data. The uniform curvelet coefficients can be calculated by using the inver-
sion algorithm of the spectral projected-gradient for ‘1-norm problems. Then local threshold factors are chosen
for the uniform curvelet coefficients for each decomposition scale, and effective curvelet coefficients are obtained
respectively for each scale. Finally, the conventional inverse FDCT is applied to the effective curvelet coefficients.
This completes the proposed 3D denoising method using the non-equispaced curvelet transform in the source-
receiver domain. The examples for synthetic data and real data reveal the effectiveness of the proposed approach
in applications to noise attenuation for non-uniformly sampled data compared with the conventional FDCT
method and wavelet transformation.
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1. Introduction

At present,with increasing seismic exploration in complex areas, such
asmountains, desert, loess, and sandy soil, the subsurface structure of the
exploration targets also become more and more complex. Meanwhile,
seismic data often contain a lot of random noise, such as microseismic,
background interference, environmental interference, etc. The random
noises contaminate the effective signal in seismic data processing, and
random distortions make it difficult to perform the subsequent data pro-
cessing steps. Eventually it will reduce the signal-to-noise ratio (SNR). As
a consequence, noise attenuation is a fundamental problem in seismic
exploration (Liu et al., 2015;Wang et al., 2016; Amani et al., 2017).More-
over, the complex geographical conditions make it impossible to
completely suppress the random noise at the acquisition stage, even
with some effective denoising measures taken to improve the SNR in
the field. Therefore, effective digital denoising methods are highly desir-
able to improve the SNR of the prestack data tomeet the requirements of
subsequent data processing tasks (Li et al., 2015; Zhao et al., 2016).

Recently, many effective methods have been proposed to eliminate
random noise (Liu et al., 2012; Gan et al., 2016; Chen et al., 2016;

Trickett and Burroughs, 2009). One of the most widely used methods
is sparsity-promoting transform with fixed-basis functions, for exam-
ple, the discrete cosine transform (Lu and Liu, 2007), the Fourier trans-
form (Trickett, 2003), the wavelets transform (Mallat, 2009), the
curvelet transform (Ma and Plonka, 2010), the seislet transform
(Fomel and Liu, 2010), contourlets (Do and Vetterli, 2005), shearlets
(Labate et al., 2005), and bandelets (Pennec and Mallat, 2005), as
well as the classic Radon transform (Ibrahim and Sacchi, 2014). The
principle of all these denoising approaches is to separate signal from
noise in a sparse transformation domain. By choosing some appropri-
ate threshold value for the sparse coefficients, the random noise can
be effectively suppressed. In order to achieve the desired denoising ef-
fect, the basis function of the sparse representation is required to cap-
ture the seismic wavefronts as accurately as possible. A small number
of large coefficients should be able to represent the main features of
the original data, while a large number of small coefficients corre-
sponding to the random noise should be filtered out by the threshold
operator. However, most of these effective denoising methods assume
uniform sampling along all axes, and have a poor denoising effect
when the sampling is non-uniform. Due to physical limitations in
land surveys and feathering of cable in marine surveys, real seismic
data are usually acquired on non-uniform grids. If treated as from uni-
form sampling, the data do not yield continuous wavefronts in shot
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gathers, and the resulting error will further affect the subsequent sub-
surface image.

To address this issue, geophysicists commonly use binning to bring
non-uniformly sampled data to the uniform grid. However, this method
discards the actual recording locations and is only a low-dip and low-
frequency approximation, so it will reduce the resolution of the seismic
profile. At the same time, many researchers also proposed the
Fourier transform-based non-uniform method to solve this problem
(Duijndam et al., 1999; Hindriks and Duijndam, 2000; Xu et al., 2005;
Zwartjes, 2005). However, when the subsurface structure becomes
complex or in high-dip-angle events, Fourier transform-based methods
suffer from an error of high prediction because of the large number of
dip components to be predicted (Chen and Ma, 2013). Furthermore,
they are not successful in processing seismic data that include nonlinear
events. It is commonly believed that the fewer components required to
represent the signal, the more successful the transformation in signal
denoising will be. Many researchers therefore prefer the fast discrete
curvelet transform (FDCT). By virtue of its anisotropic shape, the FDCT
method can provide a nearly optimal representation of signals and it is
well adapted to detect wavefronts because aligned curvelets correlate
well with them locally. The application results also show that FDCT-
based denoising method has been proved as a method that increases
the SNR of the seismic images more than the other introduced methods
and has minimum undesired influence on such images (Neelamani
et al., 2008, 2010; Herrmann, 2010; Lari and Gholami, 2014; Górszczyk
et al., 2015; Mortezanejad and Gholami, 2016). However, the initial im-
plementation premise of the FDCT still assumes a uniformly sampled
grid along all axes (Zhang et al., 2015). If we ignore the actual non-
uniformity of spatial sampling, FDCT can no longer detect them cor-
rectly. Hennenfent and Herrmann (2006) and Hennenfent et al.
(2010) proposed a non-equispaced fast discrete curvelet transform
(NFDCT), with similar effectiveness and robustness as the FDCT. How-
ever, Hennenfent and Hermann only consider 2D random noise attenu-
ation of non-uniformly sampled data by introducing the 1D NFFT.

In this paper, we extend the NFDCT-based 2D denoising method to
3D along two spatial dimensions. In order to savememory space and im-
prove the computation speed, denoising directly aims at every time slice
extracted from the 3D noisy data in the source-receiver domain. The 2D
NFFT is introduced to replace the 2D FFT during the process of the con-
ventional FDCT-based denoising method, and the regularized inversion
of the operator that links the curvelet coefficients to non-uniformly sam-
pled noisy data is constructed. Then theuniform curvelet coefficients can
be calculated by using the inversion algorithm of the spectral projected-
gradient for ‘1-norm problems. To avoid the over-thresholding effect
thatmay occur by using a global threshold factor, suitable local threshold
factors proportional for each scale are chosen for the uniform curvelet
coefficients, and effective curvelet coefficients can be obtained respec-
tively for each scale. At the last stage, we can get the 3D denoised data

by using the conventional inverse FDCT (IFDCT) for the effective curvelet
coefficients.We provide numerical tests demonstrating that ourmethod
is effective and robust in attenuating the non-uniformly random noise,
superior to the conventional FDCT method.

2. Curvelet transform

The curvelet transform tries to find the contribution from each point
of data in the t-x domain to isolated directional windows in the f-k do-
main (Candès and Donoho, 2004). If we let y(t,x) represent seismic
data in the t-x domain, we can define a set of curvelet functions ψj, l, k

where the index parameters j, l, k indicate the scale (from coarsest to
finest), the angle or dip, and the location of the curvelet coefficients, re-
spectively. Curvelets can be thought of as wavelets with the additional
important property of directionality (dip). The continuous curvelet
transform can be represented as the inner product of the data y(t,x)
and the curvelet function

c j; l; kð Þ ¼ y;ψ j;l;k
� � ¼

Z
R2
y t; xð Þψ j;l;k t; xð Þdx; ð1Þ

The curvelet transform is multiscale, multidirectional, and localized.
It corresponds to a specific tiling of the f-k domain into scales that are dy-
adic bands—i.e., bandswhose radial width doubles every scale—centered
around the zero-frequency zero-wavenumber, or so-called DC point.
These scales are subsequently broken up into parabolic angular wedges.
The term “parabolic” refers to the relation between the length andwidth
of a wedge, i.e., length ∝width2. Fig. 1 sketches the resulting curvelet til-
ing of the f-k domain. Because of the parabolic scaling, the number of
wedges doubles with every other scale and the curvelets, which live in
wedges, become more and more anisotropically shaped.

In our study, we adopt the FDCT. Candès et al. (2006) proposed two
new 2D discrete procedures to implement the curvelet transform: the
FDCT via unequally spaced fast Fourier transform (FDCT via USFFT)
and the FDCT via wrapping specially selected Fourier samples (FDCT
via wrapping). In this paper, we focus on the FDCT via wrapping. Our al-
gorithm was developed using the curvelet transform provided by the
package CurveLab. In the rest of this paper, we refer to the FDCT via
wrapping as the curvelet transform.

3. Nonequispaced curvelet transform

The FDCT viawrapping expands by a factor of approximately eight in
two dimensions. Its forward and inverse transforms are superior be-
cause of its simpler implementation and therefore faster execution es-
pecially when dealing with large numbers of data. The main steps of
its analysis operator are as follows: (1) apply the analysis 2D FFT to
get the Fourier coefficients; (2) form the angular wedges and wrap
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Fig. 1. Schematic curvelet tiling of the f-k plane. From left to right: complete DC-centered tiling, jth dyadic scale, and one angular “parabolic” wedge.

222 H. Zhang et al. / Journal of Applied Geophysics 151 (2018) 221–233



Download English Version:

https://daneshyari.com/en/article/8915455

Download Persian Version:

https://daneshyari.com/article/8915455

Daneshyari.com

https://daneshyari.com/en/article/8915455
https://daneshyari.com/article/8915455
https://daneshyari.com

