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We have calculated the waveforms of sonic reflection logging for a fluid-filled borehole located in a transversely
isotropic rock. Calculations have been performed for an acoustic impulse sourcewith the characteristic frequency
of tens of kilohertz that is considerably less than the frequencies of acoustic borehole imaging tools.
It is assumed that the borehole axis coincides with the axis of symmetry of the transversely isotropic rock. It was
shown that the reflectedwavewas excitedmost efficiently at resonant frequencies. These frequencies are close to
the frequencies of oscillations of a fluid column located in an absolutely rigid hollow cylinder. We have shown
that the acoustic reverberation is controlled by the acoustic impedance of the rock Z=Vphρs forfixed parameters
of the borehole fluid, where Vph is the velocity of horizontally propagating P-wave; ρs is the rock density. The
methods of waveform processing to determine the parameters characterizing the reflected wave have been
discussed.
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1. Introduction

The acoustic field generated by a source of elastic waves contains a
huge amount of information about the physical properties of rocks
(Mavko et al., 2009; Vernik, 2016). Conventional logging tools are
destined mainly for the measurement of velocities and attenuations of
elastic waves in boreholes (Ivakin et al., 1978; Paillet and Cheng,
1991; Brie et al., 1998; Tang and Cheng, 2004; Arroyo Franco et al.,
2006; Haldorsen et al., 2006; Baron and Holliger, 2010). In the 80s of
the last century, a development of a new type of acoustic logging tools
destined to measure parameters of the waves reflected from the
borehole wall was started. For measurements, fixed-frequency sources
of monochromatic oscillations were being used. After turning off the
source, the time, within which the signal amplitude decreases a given
amount of times, is measured. The source frequency bands used lie
within the first dozens of kilohertz (10–30 kHz). The main purpose of
these tools is the measurement of the acoustic impedance of the
borehole wall and acoustic reverberation time of the borehole (Krutin
et al., 1978; Goutsaliuk, 1979). It should be noted that the tools of this
type are considerably different from the well-known acoustic borehole
scanner (acoustic televiewer), because the acoustic TV is destined to
obtain a borehole wall image. In the case of acoustic televiewer, high-
frequency (above 500 kHz) sonic impulses are emitted, and an image
of the borehole wall is generated. Using lower frequencies (10 and
more times lower compared to the acoustic TV frequencies) allows us

to decrease the influence of the absorption in the borehole fluid and
the borehole walls irregularities on the acoustic signal parameters, as
well as to increase the penetration depth of the waves.

In the tools considered for modeling in the works by Krutin et al.
(1978); Goutsaliuk (1979), the emitters are much longer than those
used in acoustic borehole scanners. These long emitters generate oscil-
lations of considerably lower frequencies (tens of kHz). Because of
the focusing system, such emitters generate a quasi-cylindrical wave
(discussion of this lies outside the scope of the present work). As a
rule, in such a measurement system, the acoustic source is used as a
receptor of acoustic oscillations.

In thework of Krutin et al. (1986), the acoustic reverberation time of
a borehole in a saturated porous medium was estimated. A simplified
model was proposed: an acoustic source of infinite length in time-
harmonic regime. The authors have shown that the acoustic reverbera-
tion time of a borehole depends on the rock permeability.

In the paper byMarkov et al. (2014), the problemof acoustic reverber-
ation time determination was considered for an impulse axisymmetric
source of a finite length in a porous fluid-saturated formation. In the
paper (Markov et al., 2015), the reflected acoustic field was calculated
for a multipole acoustic source located in open or cased borehole. All
the above mentioned results were obtained for isotropic rocks, mean-
while, many rocks are anisotropic (White, 1983; Mavko et al., 2009;
Vernik, 2016). Nowadays it is possible to detect intervals containing
systems of subvertically oriented cracks by using cross-dipole acoustic
log data (Sinha and Kostek, 1996; Tichelaar and Hatchell, 1997; Tang
and Chunduru, 1999). Unfortunately, this method is not applicable in
certain cases, as in the case where the anisotropy is caused by the pres-
ence of layered clay, interlayered fine-grained rocks or sub horizontal
cracks (Market et al., 2015).
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The objective of the presentwork is to investigate the field of the elas-
tic wave reflected from the wall surface of a borehole located in a trans-
versely isotropic medium. We present the synthetic microseismograms
for a borehole containing an acoustic impulse source with the character-
istic frequency of tens of kilohertz that is considerably less than the
frequencies of acoustic borehole imaging tools. In the second section of
this article we give a short description of the model used to calculate
synthetic microseismograms. Numerical results are presented in the
third section. In the fourth section of the paper we discuss a method of
sonic reflection log data processing based on the determination of
acoustic signal decay in the borehole. In this section the dependences
between the reflected wave characteristics and rock elastic properties
are considered.

2. Acoustic field generated by an axisymmetric source in a borehole
located in a transversely isotropic medium

Let us consider a system: linear acoustic source – infinite borehole
filled with a compressible fluid – transversely isotropic elastic medium.
The linear axisymmetric acoustic source is located on the axis of
symmetry of the borehole (Z-axis).

The propagation of elastic waves in the fluid-filled borehole is
described by the equation:

Δφ f ¼
1
c2

€φ f ; ð1Þ

where φf is the displacement potential of the compressional wave in
the borehole fluid; c is the compressional wave velocity in the fluid,
c = 1/√βf ρf; βf and ρf are the compressibility and the density of
the borehole fluid, respectively. The fluid displacement W satisfies
Eq. (2):

W ¼ ∇φ f : ð2Þ

In the frequency domain, this potential satisfies the Helmholtz
equations, and in the time domain, it is described by the following
expression (Tang and Cheng, 2004; Markova et al., 2011):

φ f r; z; tð Þ ¼
Z∞
−∞

dω
Z∞
−∞

P0 f kzð ÞK0 kf
r r

� �
þ X1I0 kf
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S ωð Þ exp i kzz−ωtð Þ½ �dkz;

ð3Þ

where P0 is the emitted impulse amplitude; ω = 2πf is the angular
frequency; f(kz) is the space spectrum of the source (Kurkjian and
Chang, 1983), for a point source f(kz)=1; S(ω) is the frequency
spectrum of the source; I0(z),K0(z)are the modified Bessel functions

of the first and second kinds; kf
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z−ω2=c2

q
is the radial wave

number; X1 is the amplitude of the reflected wave; X1 is a function of
the radial wave number and the angular frequency.

Usually, the parameter measured is the acoustic pressure P in the
borehole fluid. Its Fourier transform p(ω) is related to the Fourier
transform of the potential ~φ f by the equation:

p ωð Þ ¼ −ω2ρ f ~φ f ωð Þ: ð4Þ

The wave equations for transversely isotropic media in cylindrical
coordinates are (White and Tongtaow, 1981):
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∂r
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∂r
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;

ð5Þ

where ρs is the density of the solid phase; Ur, Uz are the radial and
tangential components of the displacement vector. Hooke's law has
the form:

σθθ ¼ C11−2C66ð Þerr þ C11eθθ þ C33ezz;
σ rr ¼ C11err þ C11−2C66ð Þeθθ þ C13ezz;
σ rz ¼ C44erz;
σ zz ¼ C13err þ C13eθθ þ C33ezz;

ð6Þ

where Cij are the components of the Voigt stiffness matrix; eij are the
components of the tensor of deformations (Mavko et al., 2009).

We calculate the displacement vector U using the decomposition in
the frequency domain (White, 1983):

U ωð Þ ¼ ∇φs þ ∇�Ψs; ð7Þ

where φs(ω) and Ψs(ω) are the scalar and vector potentials of the
displacement:

φs ωð Þ ¼
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and
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:

The coefficients Xi are found from the boundary conditions at the
borehole wall (r = R). The boundary conditions at the borehole wall
for a fluid-filled borehole are based on the continuity of radial displace-
ment, continuity of radial stress and vanishing of tangential stress:

Ur ¼ Wr ;σ rr ¼ −p;σ rθ ¼ 0: ð10Þ

By substituting the expressions (3), (8) and (9) in the boundary
conditions (10), we have obtained the system of equations that allows
to calculate the unknown coefficients X1, X2, X3 which determine
the amplitudes of reflected and outgoing waves. The explicit form of
the system of equations to determine the coefficients Xi is given in
Appendix A.

For the emitted pulse we have used the expression:

P tð Þ ¼ P0 sin ω0tð Þt2e−δ t ; ð11Þ

where ω0 is the central frequency of the acoustic source; δ = ω0/√3 is
the attenuation coefficient; P0 is the normalization constant.

The integrand in Eq. (3) has singularities: the poles and the branch
points. The branch points correspond to the compressional (P) and
shear (S) waves propagating along the borehole wall. The poles
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