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a b s t r a c t

Classical simulations of quantum circuits are limited in both space and time when the qubit count is
above 50, the realm where quantum supremacy reigns. However, recently, for the low depth circuit with
more than 50 qubits, there are several methods of simulation proposed by teams at Google and IBM. Here,
we present a scheme of simulation which can extract a large amount of measurement outcomes within a
short time, achieving a 64-qubit simulation of a universal random circuit of depth 22 using a 128-node
cluster, and 56- and 42-qubit circuits on a single PC. We also estimate that a 72-qubit circuit of depth 23
can be simulated in about 16 h on a supercomputer identical to that used by the IBM team. Moreover, the
simulation processes are exceedingly separable, hence parallelizable, involving just a few inter-process
communications. Our work enables simulating more qubits with less hardware burden and provides a
new perspective for classical simulations.

� 2018 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.

1. Introduction

The last few years have seen a series of significant advances in
quantum computing, in particular regarding superconducting
quantum chips with reports of devices of 20 and 50 qubits with
good fidelity [1,2]. In the meantime, great progress has also been
made with semiconductor quantum chips [3–5]. ‘‘Quantum
supremacy” claims that the limit of classical computers would be
transcended if a device of 50 qubits were made [6]. Direct simula-
tions of 50 qubits take about 16-PB of RAM to store the full vectors.
Google and IBM teams have proposed some efficient methods for
simulating the low-depth circuit with more than 49 qubits (e.g.,
deferral of entanglement gates [7] and Feynman path method
[8]). Here, we present a scheme to optimize the classical simula-
tion of quantum circuits with low depth and large sampling num-
ber, with which we have performed a 64-qubit simulation with
sampling number 228 and depth 22. In particular, by transforming
several control-Z (CZ) gates to measurement and single-qubit
gates, the circuit is mapped onto an additional 2n sub-circuits.
These sub-circuits are formed by two blocks without any qubit
entanglement between them, thereby converting an N qubit simu-
lation problem into a group of N/2. Our method is similar to a small
balanced cut in a two-dimensional grid [9], while the method

developed by Aaronson is more general but more complicated as
a compromise. For decomposing one CZ gate, their method splits
the original circuit into eight sub-circuits, while in our case it splits
into four. The results of all the sub-circuits are then added together
to reconstruct the final state. In practice, we simulated the univer-
sal random circuit, which is used to characterize the quantum
supremacy in the region of quantum chaos [10–17].

2. Methods

2.1. Partition scheme

A CZ gate can be transformed into two groups of measurement
and single-qubit gates, specifically

CZ ¼ P0 � I þ P1 � Z; ð1Þ

where P0 ¼ 1 0
0 0

� �
, P1 ¼ 0 0

0 1

� �
. I denotes the unit matrix, and Z

the Pauli-Z matrix. The transformation dismisses the entanglement
gate between the two qubits and makes a copy to the circuit. We
illustrate an 8-qubit circuit of depth 8 as an example (Fig. 1). By
transforming CZ gates in the 7th and 8th layer (in the dashed
boxes), the original circuit is converted to four copies. The final state
is the addition of the four final states of each copy. In the four
copies, qubits 0–3 are no longer entangled with qubits 4–7. Hence
we can simulate them separately. At the beginning, 8 qubits can
represent 28 states, and after the conversion, there are 8 circuits
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each with 4 qubits representing 8 � 24 states (see the grey dashed
boxes in the bottom of Fig. 1); the space is reduced. Initially, there
are 27 gates of 8 qubits, and after the conversion, there are 112
gates of 4 qubits — the time is therefore reduced.

In practice, we divided each of the 4 qubit into two
half-circuits — an upper and a lower part as shown in the bottom
of Fig. 1. In the first six layers, there is no CZ gate entangling
the two half-circuits. In the 7th and 8th layers, the CZ gates
entangling the two half-circuits should be transformed as
mentioned above. The same holds for the transformation executed
on the 15th and 16th layers. This generates 2c circuits to be
simulated, where c is the number of transformed CZ gates.

2.2. Methods to estimate the different qubit counts and depths

We provide in Table 1 a set of time estimates for various qubit
topologies and circuit depths. The time estimation are obtained
from

Time ¼
XdðdepthÞ

i¼1

niðgatesÞ �m circuitsð Þ

� tðtime = gateÞ=s nodesð Þ; ð2Þ

where ni is the number of efficient gates in the ith layer of each half
circuit, d the depth, m corresponds to the number of the equivalent
half-circuits, t is the average time per gate, and s is the number of
nodes (or parallel units if more than one node are packed into a
unit).

Under the rules described in Ref. [1], we estimate the number of
X and Y gates in each layer of each half circuit (expect for the first
three layers) to be 6, 8 and 10 for 56-, 64- and 72-qubit circuit,
respectively. As we optimize the simulation of diagonal gates, all

of the CZ gates and T gates in each half circuit can be combined into
2 gates. Therefore, for all scales of the circuits, we make n1 = 1, n2 =
2 and n3 = 2 while for i >3 we let ni to be 8, 10 and 12 for the 56-,
64- and 72-qubit half circuit, respectively.

2.3. Simulation schemes on different hardware circumstances

When the qubit count (simulated directly) increases from 28 to
32, and further to 36, different simulation strategies should be
applied to adapt to the huge difference in the amount of storage
required. Here, we propose three possible hardware configurations

Fig. 1. An example for partitioning. The first row is the original circuit. The two CZ gates in the dashed boxes entangle the first and last four qubits. Next, the left CZ gate is
transformed, the original circuit being equivalent to the addition of the circuits in the second row. Continuing, the right CZ gate is transformed, generating four circuits in the
third row. The final state of the original circuit is equal to the addition of all transformed circuits. The dashed boxes in the third line divide each circuit into two parts, where
they can be simulated independently. Inset: The 4 � 2 quantum circuit of depth 8 expressed in the form of a grid, where the coloured squares represent different gates:
yellow–an X gate, green–a Y gate, red–a T gate, and grey–a CZ gate. Each graph represents a layer. The numbers denote the corresponding qubit in this example.

Table 1
Time estimations for different qubit counts and depths for the universal random
circuit. The average time per gate of the 28-qubit circuit is estimated to be 0.25 s, and
that of the 32-qubit and 36-qubit circuits (obtained from Ref. [18]) are 0.38 and 0.67
s, respectively.

Qubit Depth Time estimation

56 22 54.8 s
23 7.68 min
30 2.74 h
31 22.7 h
38 18.9 d
39 155 d

64 22 6.90 min
23 1.93 h
30 1.73 d
31 28.7 d

72 22 58 min
23 16 h
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