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a b s t r a c t

In the gossiping problem, each node in a network starts with a unique piece of information
and must acquire the information of all other nodes using two-way communications be-
tween pairs of nodes. In this paperwe investigate gossiping in n-node networkswith n odd.
Weuse a linear costmodel inwhich the cost of communication is proportional to the amount
of information transmitted. In synchronous gossiping, the pairwise communications are
organized into rounds, and all communications in a round start at the same time. We
present optimal synchronous gossip algorithms for all odd values of n, proving the truth of
a conjecture by Fertin, Peters, Raabe, and Xu. Central to the construction of the algorithms
is a doubly-inductive proof about properties of optimal gossip algorithms.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Gossiping is an information dissemination process in which each node of a communication network has a piece of
information that must be acquired by all the other nodes. Information is communicated between pairs of nodes using two-
way communications or calls along the communication links of the network. Gossiping is a well-studied problem. There are
many papers describing algorithms that minimize the gossip time on various interconnection networks (e.g. hypercubes,
meshes, Cayley graphs), using a variety of switching models (store-and-forward, circuit-switched, cut-through) and cost
models (unit cost, linear cost), as well as various models of fault-tolerance. There are also papers describing methods to
construct gossip graphs thatminimize the resources (usually the number of communication links) needed to allowminimum
time gossiping, again for various models. See [7,9–12] for surveys of these results.

There has been less study of theminimum time needed to gossip when the topology of the interconnection network does
not restrict the communication patterns. In an early paper, Knödel [14] proved that the number of rounds of communication
necessary to gossip among n nodes is ⌈log2n⌉ when n is even, and ⌈log2n⌉ + 1 when n is odd. He also proved sufficiency by
describing gossip algorithms that meet the lower bounds on numbers of rounds. The half-duplex version of this problem, in
which communication links can only be used in one direction at any given time, has also been studied [3,15]. All of these
papers assume a unit cost model in which a communication takes one time unit independent of the amount of information
being transmitted.

There is considerable current interest in gossip-based algorithms. First introduced byDemers et al. [2], these are distributed
algorithms that attempt to mimic the ways that epidemics spread. The algorithms consist of pairwise communications
between nodes (peers) inwhich one node contacts a neighbour (usually chosen randomly) and exchanges some information.
Originally devised for distributed database replication, they are also used for information dissemination, overlay network
management, distributed consensus, aggregation, and resource management. They differ from the algorithms that we study
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in this paper mainly in that they are distributed, randomized, and are focused on the rate of convergence to a result
rather than achieving a specific deterministic result. Kermarrec and van Steen [13] give a good overview of this area, and
other papers in the same volume [1] examine the issues in more detail including a framework for classifying problems by
Fernandess et al. [4].

In this paper, we study the structure of minimum-time gossip algorithms when the topology of the interconnection
network does not restrict the communication patterns using a classical store-and-forward, 1-port, full-duplex model. In this
model, each communication involves two nodes and a communication link that connects them, and information can flow
simultaneously in both directions along a link. Each node starts with a piece of information of length 1. Information can be
combined into longer messages and sent in a single communication. We will use a linear cost model in which the time to
send a message of length ℓ is β + ℓτ where β is the time for the leading edge of a message to propagate along a link from
sender to receiver, and 1

τ
is the data rate of the link. It will be convenient to think of a call involving messages of length ℓ as

a start-up period that takes time β followed by a sequence of ℓ steps each of which takes time τ . If a call involves messages
of different lengths, then the time for both nodes to complete the communication is determined by the length of the longer
message.

The synchronous linear cost model that we use in this paper is a generalization of the unit cost model. A synchronous
gossip algorithm consists of a sequence of rounds of simultaneous pairwise communications, and all calls in a round start
at the same time. Calls in a round may end at different times, depending on the lengths of the messages, but no node can
start a new call until all nodes are ready to start new calls. Gossiping has also been studied with an asynchronous linear cost
model [6,8] in which a call can start as soon as both nodes are ready to communicate. This allows a pair of nodes to start
communicating while calls between other pairs are in progress. We will restrict attention to synchronous gossip algorithms
in this paper. Note that the unit cost model is always synchronous because each call takes one time unit.

Fraigniaud and Peters [8] investigated the structure of minimum-time gossip algorithms using a linear cost model. They
proved a lower bound on the time to gossip when the number of nodes n is even and showed that there is a synchronous
gossip algorithm that achieves the lower bound for every even n. They also gave examples to show that minimum-time
gossip algorithms for some odd values of n must be asynchronous; any synchronous algorithm requires strictly more than
minimum time.

Fertin, Peters, Raabe, and Xu [6] studied gossiping with n odd and a linear cost model. They proved a general lower bound
of (⌈log2n⌉ + 1)β + nτ on the time to gossip for any β ≥ 0 and τ ≥ 0. This lower bound holds for all odd n for both the
synchronous and asynchronous models. The bound is achievable in the asynchronous model for some odd values of n, but
they proved that every gossip algorithm for n = 2k

− 1, k ≥ 3, requires time strictly greater than (⌈log2n⌉ + 1)β + nτ . They
proved stronger lower bounds for the synchronousmodel and conjectured that their lower bounds are achievable for all odd
n. They gave an ad hoc synchronous algorithm that achieves their lower bound for n = 2k

− 1, k ≥ 2.
In Section 2, we briefly review the lower bounds for synchronous gossiping from [6]. We then analyze Knödel’s algorithm

using the linear cost model and compare the upper bounds from this analysis to the lower bounds from [6]. As we will see,
there is a large gap between the upper and lower bounds. Our main result in this paper is a collection of algorithms that
achieves the lower bounds for all odd values of n, thereby establishing the truth of the conjecture in [6]. Our treatment of the
synchronous upper bounds is split into two sections. In Section 3, we consider odd values of n that are in the top half of any
range between two consecutive powers of 2. In Section 4, we consider the bottom halves of the ranges. The construction of
the algorithms is based on two properties of optimal gossip algorithms which we establish in Section 3 with an interesting
doubly-inductive proof.

2. Lower bounds and Knödel’s algorithm

At any given time during a gossip algorithm for n odd, at least one node will be idle (not involved in a communication)
because each call involves a pair of nodes. Based on this fact, Knödel [14] showed that gossiping in the unit cost model
requires ⌈log2n⌉ + 1 rounds when n is odd. This lower bound on the number of rounds is also valid for the synchronous
linear cost model with β ̸= 1 and τ = 0. The only difference in this case is that each round of a gossip algorithm takes
time β instead of time 1. By a similar argument, at least n steps are required to gossip when n is odd because each node
needs to acquire n − 1 pieces of information, and at least one node is idle during each step. This gives a lower bound of
max{(⌈log2n⌉ + 1)β, nτ }. Fertin, Peters, Raabe, and Xu [6] proved a lower bound of (⌈log2n⌉ + 1)β + nτ for odd n which
applies to both the synchronous and asynchronous cases. They proved stronger lower bounds for the synchronous case by
fixing the number of rounds to be ⌈log2n⌉+1 and then focusing on the required number of steps.We take the same approach
to synchronous upper bounds in this paper.

The pairwise communications of a synchronous gossip algorithm are organized into a sequence of rounds. All calls in a
round start at the same time but the nodes may finish communicating at different times during the round depending on the
lengths of the messages that they are receiving. All calls begin with a start-up period that takes time β followed by some
number of steps. Since all nodes must finish the round before any node can start a new call, the length of the round depends
on the number of steps needed to receive the longest message and we can unambiguously refer to the start-up period of a
round and the number of steps in the round.

The required number of rounds, ⌈log2n⌉+1, is the same for every odd n between 2k−1
+1 and 2k

−1, where k = ⌈log2n⌉.
The required total number of steps for all rounds and also the required numbers of steps in each of the rounds depend on
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