Note

The diameter of strong orientations of Cartesian products of graphs

Simon Špacapan

University of Maribor, FME, Smetanova 17, 2000, Maribor, Slovenia

ARTICLE INFO

Article history:

Received 9 April 2017
Received in revised form 8 March 2018
Accepted 19 March 2018
Available online 12 July 2018

Keywords:

Strong orientation
Diameter
Cartesian product

Abstract

Let G and H be graphs, and $G \square H$ the Cartesian product of G and H. We prove that for every connected bridgeless graphs G and H, the Cartesian product $G \square H$ admits an orientation of diameter at most $\operatorname{wdiam}_{\min }(G)+\operatorname{wdiam}_{\min }(H)+8$, where wdiam $\min (G)$ denotes the minimum weak diameter of an orientation of G. Orientations of products of graphs that have bridges are considered as well, and an upper bound for the minimum diameter of such orientations is given.

© 2018 Published by Elsevier B.V.

1. Introduction

Let $D=(V, A)$ be a directed graph, and $u, v \in V$. If $(u, v) \in A$ we write $u \rightarrow v$, and we say that u is an in-neighbor of v, and that v is an out-neighbor of u. A $u v$-path in D is a sequence of pairwise distinct vertices $u=u_{0}, u_{1}, \ldots, u_{n}=v$ such that $u_{i} u_{i+1} \in A$ for all subscripts i. We say that D is strong if there is a $u v$-path in D for every $u, v \in V$. The length of the path $u=u_{0}, u_{1}, \ldots, u_{n}=v$ is n, the number of arcs between consecutive vertices. For vertices $u, v \in V$ the distance from u to v in D is the length of a shortest $u v$-path in D, if such a path exists, otherwise the distance is ∞. We denote the distance from u to v by $\operatorname{dist}_{D}(u, v)$, or simply by $\operatorname{dist}(u, v)$ when D is clear from the context. The diameter of D is

$$
\operatorname{diam}(D)=\max \{\operatorname{dist}(u, v) \mid u, v \in V\}
$$

and the weak diameter of D is

$$
\operatorname{wdiam}(D)=\max \{\min \{\operatorname{dist}(u, v), \operatorname{dist}(v, u)\} \mid u, v \in V\}
$$

Observe that for every pair of distinct vertices $u, v \in V$, there is a $u v$-path and a $v u$-path in D of length at most diam (D). Moreover, for every pair of distinct vertices $u, v \in V$, there is a $u v$-path or a $v u$-path in D of length at most wdiam (D). The difference between $\operatorname{diam}(D)$ and wdiam (D) can be arbitrarily large. To see this let D be a tournament with vertices x_{0}, \ldots, x_{n}, where $\left(x_{i}, x_{j}\right)$ is an arc in D if and only if $j=i+1$ or $j \leq i-2$. Clearly, $\operatorname{diam}(D)=n$ and $\operatorname{wdiam}(D)=1$.

Let G be an undirected graph. Let $\operatorname{diam}_{\min }(G)$ be the minimum diameter of a strong orientation of G
$\operatorname{diam}_{\min }(G)=\min \{\operatorname{diam}(D) \mid D$ is a strong orientation of $G\}$.
Similarly let wdiam $\min ^{(G)}$ be the minimum weak diameter of a strong orientation of G
$\operatorname{wdiam}_{\min }(G)=\min \{\operatorname{wdiam}(D) \mid D$ is a strong orientation of $G\}$.

[^0]

Fig. 1. The graph G_{4}.

For example, if C_{n} is the cycle on n vertices, then

$$
\operatorname{diam}_{\min }\left(C_{n}\right)=n-1 \text { and } \operatorname{wdiam}_{\min }\left(C_{n}\right)=\operatorname{diam}\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor
$$

In the above example wdiam $\min _{\min }$ is roughly one half of $\operatorname{diam}_{\min }$. We claim even more: there is a sequence of graphs G_{n}, such that

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{wdiam}_{\min }\left(G_{n}\right)}{\operatorname{diam}_{\min }\left(G_{n}\right)}=0
$$

To see this, let G_{n} be the graph obtained from a path on $n^{2}+1$ vertices $x_{0}, \ldots, x_{n^{2}}$, by adding edges $x_{n \ell} x_{n(\ell+1)}$ for $\ell=$ $0, \ldots, n-1$ (see Fig. 1). For any strong orientation of G_{n} the following is true: for every $\ell=0, \ldots, n-1$ we have $x_{n \ell} \rightarrow x_{n(\ell+1)}$ if and only if $x_{i} \rightarrow x_{i-1}$ for $i=n \ell+1, \ldots, n(\ell+1)$, and $x_{n(\ell+1)} \rightarrow x_{n \ell}$ if and only if $x_{i-1} \rightarrow x_{i}$ for $i=n \ell+1, \ldots, n(\ell+1)$. By observing vertices x_{0} and $x_{n^{2}}$ we find that for even n we have

$$
\operatorname{diam}_{\min }\left(G_{n}\right) \geq \frac{n}{2}+\frac{n}{2} \cdot n=\frac{1}{2}\left(n^{2}+n\right)
$$

where the optimal orientation that minimizes the diameter (more precisely, minimizes the distances between x_{0} and $x_{n^{2}}$) is the orientation where one half of edges $x_{n \ell} x_{n(\ell+1)}$ is directed $x_{n \ell} \rightarrow x_{n(\ell+1)}$ and the other half is directed $x_{n \ell} \leftarrow x_{n(\ell+1)}$. The optimal orientation that minimizes the weak diameter is the orientation where for every $\ell, x_{n \ell} \rightarrow x_{n(\ell+1)}$. Therefore

$$
\operatorname{wdiam}_{\min }\left(G_{n}\right) \leq 2(n-1)+n=3 n-2
$$

which proves the claim.
The parameter $\operatorname{diam}_{\min }(G)$ was studied from theoretical and practical points of view. It is important in traffic control problems (see [13]), when two-way streets are turned into one-way streets to achieve a better traffic flow. The objective is to minimize the longest distance when doing this. A general bound for $\operatorname{diam}_{\min }(G)$ was obtained in [3] (see also [1]) where the following result was proved.

Theorem 1.1 ([3]). For every bridgeless connected graph G of radius r, $\operatorname{diam}_{\min }(G) \leq 2 r^{2}+2 r$.
In this article we consider the diameter of orientations of Cartesian products of graphs. The Cartesian product of graphs G and H is the graph, denoted as $G \square H$, with vertex set $V(G \square H)=V(G) \times V(H)$, where vertices $\left(x_{1}, y_{1}\right)$ and (x_{2}, y_{2}) are adjacent in $G \square H$ if and only if $x_{1} x_{2} \in E(G)$ and $y_{1}=y_{2}$, or $x_{1}=x_{2}$ and $y_{1} y_{2} \in E(H)$. Several results on distances in Cartesian products of graphs are given in [4]. For $y \in V(H)$ the G-layer G_{y} is the set $G_{y}=\{(x, y) \mid x \in V(G)\}$. Analogously we define H-layers. The diameter of orientations of Cartesian products (when one of the factors is bipartite) was addressed by Koh and Tay in [9]. The same authors proved in [11] that Cartesian products of trees admit orientations such that the diameter of the orientation is equal to the diameter of the underlying undirected graph.

Theorem 1.2 ([11]). If T_{1} and T_{2} are trees with diameters at least 4, then

$$
\operatorname{diam}_{\min }\left(T_{1} \square T_{2}\right)=\operatorname{diam}\left(T_{1} \square T_{2}\right)
$$

They also considered orientations of $K_{m} \square K_{n}, K_{m} \square P_{n}, P_{m} \square C_{n}$ and $K_{m} \square C_{n}$ (see [6-8,10]). In [12] it was proved that diam min $\left(C_{m} \square C_{n}\right)=\operatorname{diam}\left(C_{m} \square C_{n}\right)$ for $m, n \geq 6$.

Some related problems, like strong diameter and strong radius of Cartesian products are studied in [2] and [5], where the strong radius of Cartesian products is exactly determined, and an upper bound for the strong diameter is given.

For any connected bridgeless graphs G and H we have

$$
\operatorname{diam}_{\min }(G \square H) \leq \operatorname{diam}_{\min }(G)+\operatorname{diam}_{\min }(H)
$$

To see this let D_{G} and D_{H} be orientations of G and H, respectively, such that $\operatorname{diam}\left(D_{G}\right)=\operatorname{diam}_{\min }(G)$ and $\operatorname{diam}\left(D_{H}\right)=$ $\operatorname{diam}_{\min }(H)$. Since G-layers are isomorphic to G we can give the edges in G-layers the orientation D_{G}, and similarly we give the edges in H-layers the orientation D_{H}. The diameter of the obtained orientation is at most diam $\left(D_{G}\right)+\operatorname{diam}\left(D_{H}\right)$. The objective of this paper is to improve the bound above, and to give a bound for $\operatorname{diam}_{\min }(G \square H)$ in terms of wdiam $\min (G)$ and wdiam $_{\min }(H)$.

https://daneshyari.com/en/article/8941808

Download Persian Version:

https://daneshyari.com/article/8941808

Daneshyari.com

[^0]: E-mail address: simon.spacapan@um.si.

