Contents lists available at ScienceDirect

## **Discrete Applied Mathematics**

journal homepage: www.elsevier.com/locate/dam

## Note The diameter of strong orientations of Cartesian products of graphs

### Simon Špacapan

University of Maribor, FME, Smetanova 17, 2000, Maribor, Slovenia

#### ARTICLE INFO

Article history: Received 9 April 2017 Received in revised form 8 March 2018 Accepted 19 March 2018 Available online 12 July 2018

*Keywords:* Strong orientation Diameter Cartesian product

#### ABSTRACT

Let *G* and *H* be graphs, and  $G \Box H$  the Cartesian product of *G* and *H*. We prove that for every connected bridgeless graphs *G* and *H*, the Cartesian product  $G \Box H$  admits an orientation of diameter at most wdiam<sub>min</sub>(*G*) + wdiam<sub>min</sub>(*H*) + 8, where wdiam<sub>min</sub>(*G*) denotes the minimum weak diameter of an orientation of *G*. Orientations of products of graphs that have bridges are considered as well, and an upper bound for the minimum diameter of such orientations is given.

© 2018 Published by Elsevier B.V.

#### 1. Introduction

Let D = (V, A) be a directed graph, and  $u, v \in V$ . If  $(u, v) \in A$  we write  $u \to v$ , and we say that u is an *in-neighbor* of v, and that v is an *out-neighbor* of u. A uv-path in D is a sequence of pairwise distinct vertices  $u = u_0, u_1, \ldots, u_n = v$  such that  $u_i u_{i+1} \in A$  for all subscripts i. We say that D is strong if there is a uv-path in D for every  $u, v \in V$ . The length of the path  $u = u_0, u_1, \ldots, u_n = v$  is n, the number of arcs between consecutive vertices. For vertices  $u, v \in V$  the distance from u to v in D is the length of a shortest uv-path in D, if such a path exists, otherwise the distance is  $\infty$ . We denote the distance from u to v by dist $_D(u, v)$ , or simply by dist(u, v) when D is clear from the context. The diameter of D is

 $diam(D) = \max\{dist(u, v) \mid u, v \in V\},\$ 

and the weak diameter of D is

wdiam(D) = max{min{dist(u, v), dist(v, u)} |  $u, v \in V$ }.

Observe that for every pair of distinct vertices  $u, v \in V$ , there is a uv-path and a vu-path in D of length at most diam(D). Moreover, for every pair of distinct vertices  $u, v \in V$ , there is a uv-path or a vu-path in D of length at most wdiam(D). The difference between diam(D) and wdiam(D) can be arbitrarily large. To see this let D be a tournament with vertices  $x_0, \ldots, x_n$ , where  $(x_i, x_j)$  is an arc in D if and only if j = i + 1 or  $j \le i - 2$ . Clearly, diam(D) = n and wdiam(D) = 1.

Let G be an undirected graph. Let  $diam_{min}(G)$  be the minimum diameter of a strong orientation of G

 $\operatorname{diam}_{\min}(G) = \min\{\operatorname{diam}(D) \mid D \text{ is a strong orientation of } G\}.$ 

Similarly let wdiam<sub>min</sub>(G) be the minimum weak diameter of a strong orientation of G

wdiam<sub>min</sub>(G) = min{wdiam(D) | D is a strong orientation of G}.

E-mail address: simon.spacapan@um.si.

https://doi.org/10.1016/j.dam.2018.03.062 0166-218X/© 2018 Published by Elsevier B.V.









**Fig. 1.** The graph *G*<sub>4</sub>.

For example, if  $C_n$  is the cycle on *n* vertices, then

diam<sub>min</sub>(
$$C_n$$
) =  $n - 1$  and wdiam<sub>min</sub>( $C_n$ ) = diam( $C_n$ ) =  $\lfloor \frac{n}{2} \rfloor$ .

In the above example wdiam<sub>min</sub> is roughly one half of diam<sub>min</sub>. We claim even more: there is a sequence of graphs  $G_n$ , such that

$$\lim_{n\to\infty}\frac{\operatorname{wdiam}_{\min}(G_n)}{\operatorname{diam}_{\min}(G_n)}=0.$$

To see this, let  $G_n$  be the graph obtained from a path on  $n^2 + 1$  vertices  $x_0, \ldots, x_{n^2}$ , by adding edges  $x_{n\ell}x_{n(\ell+1)}$  for  $\ell = 0, \ldots, n-1$  (see Fig. 1). For any strong orientation of  $G_n$  the following is true: for every  $\ell = 0, \ldots, n-1$  we have  $x_{n\ell} \rightarrow x_{n(\ell+1)}$  if and only if  $x_i \rightarrow x_{i-1}$  for  $i = n\ell + 1, \ldots, n(\ell + 1)$ , and  $x_{n(\ell+1)} \rightarrow x_{n\ell}$  if and only if  $x_{i-1} \rightarrow x_i$  for  $i = n\ell + 1, \ldots, n(\ell + 1)$ . By observing vertices  $x_0$  and  $x_{n^2}$  we find that for even n we have

diam<sub>min</sub>(
$$G_n$$
)  $\geq \frac{n}{2} + \frac{n}{2} \cdot n = \frac{1}{2}(n^2 + n)$ 

where the optimal orientation that minimizes the diameter (more precisely, minimizes the distances between  $x_0$  and  $x_{n^2}$ ) is the orientation where one half of edges  $x_{n\ell}x_{n(\ell+1)}$  is directed  $x_{n\ell} \rightarrow x_{n(\ell+1)}$  and the other half is directed  $x_{n\ell} \leftarrow x_{n(\ell+1)}$ . The optimal orientation that minimizes the weak diameter is the orientation where for every  $\ell$ ,  $x_{n\ell} \rightarrow x_{n(\ell+1)}$ . Therefore

wdiam<sub>min</sub>(
$$G_n$$
)  $\le 2(n-1) + n = 3n - 2$ 

which proves the claim.

The parameter diam<sub>min</sub>(G) was studied from theoretical and practical points of view. It is important in traffic control problems (see [13]), when two-way streets are turned into one-way streets to achieve a better traffic flow. The objective is to minimize the longest distance when doing this. A general bound for diam<sub>min</sub>(G) was obtained in [3] (see also [1]) where the following result was proved.

**Theorem 1.1** ([3]). For every bridgeless connected graph G of radius r, diam<sub>min</sub>(G)  $\leq 2r^2 + 2r$ .

In this article we consider the diameter of orientations of Cartesian products of graphs. The *Cartesian product* of graphs *G* and *H* is the graph, denoted as  $G \square H$ , with vertex set  $V(G \square H) = V(G) \times V(H)$ , where vertices  $(x_1, y_1)$  and  $(x_2, y_2)$  are adjacent in  $G \square H$  if and only if  $x_1x_2 \in E(G)$  and  $y_1 = y_2$ , or  $x_1 = x_2$  and  $y_1y_2 \in E(H)$ . Several results on distances in Cartesian products of graphs are given in [4]. For  $y \in V(H)$  the *G*-layer  $G_y$  is the set  $G_y = \{(x, y) \mid x \in V(G)\}$ . Analogously we define *H*-layers. The diameter of orientations of Cartesian products (when one of the factors is bipartite) was addressed by Koh and Tay in [9]. The same authors proved in [11] that Cartesian products of trees admit orientations such that the diameter of the orientation is equal to the diameter of the underlying undirected graph.

**Theorem 1.2** ([11]). If  $T_1$  and  $T_2$  are trees with diameters at least 4, then

$$\operatorname{diam}_{\min}(T_1 \Box T_2) = \operatorname{diam}(T_1 \Box T_2)$$

They also considered orientations of  $K_m \Box K_n$ ,  $K_m \Box P_n$ ,  $P_m \Box C_n$  and  $K_m \Box C_n$  (see [6–8,10]). In [12] it was proved that diam<sub>min</sub>  $(C_m \Box C_n) = \text{diam}(C_m \Box C_n)$  for  $m, n \ge 6$ .

Some related problems, like strong diameter and strong radius of Cartesian products are studied in [2] and [5], where the strong radius of Cartesian products is exactly determined, and an upper bound for the strong diameter is given.

For any connected bridgeless graphs G and H we have

$$\operatorname{diam}_{\min}(G \Box H) \leq \operatorname{diam}_{\min}(G) + \operatorname{diam}_{\min}(H)$$

To see this let  $D_G$  and  $D_H$  be orientations of G and H, respectively, such that diam $(D_G) = \text{diam}_{\min}(G)$  and diam $(D_H) = \text{diam}_{\min}(H)$ . Since G-layers are isomorphic to G we can give the edges in G-layers the orientation  $D_G$ , and similarly we give the edges in H-layers the orientation  $D_H$ . The diameter of the obtained orientation is at most diam $(D_G) + \text{diam}(D_H)$ . The objective of this paper is to improve the bound above, and to give a bound for diam $_{\min}(G \Box H)$  in terms of wdiam $_{\min}(G)$  and wdiam $_{\min}(H)$ .

Download English Version:

# https://daneshyari.com/en/article/8941808

Download Persian Version:

https://daneshyari.com/article/8941808

Daneshyari.com