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a b s t r a c t

We present a method based on simulated annealing to obtain a nested split graph that
approximates a real complex graph. This is used to compute a number of graph indices
using very efficient algorithms that we develop, leveraging the geometrical properties of
nested split graphs. Practical results are given for six graphs from such diverse areas as
social networks, communication networks, word associations, and molecular chemistry.
We present a critical analysis of the appropriate perturbation schemes that search the
whole space of nested split graphs and the distance functions that gauge the dissimilarity
between two graphs.
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1. Introduction

The architecture of real-life networks may not be predictable and involves data which is sometimes difficult to manage.
Algorithmsknown todate for the computation ofmanyparameters associatedwith complexnetworks are often exponential-
time, blocking further development. To overcome this problem, the strategy implemented here is to use the class of nested
split graphs (NSG) since a graph in this class can provide a model network which is sufficiently close to a given real-world
network andwhich enables easy computation. The class of NSGs provides an ideal candidate as these graphs are nice towork
with, are easily stored, and their structured topology lends itself to polynomial time algorithms for the computation of certain
of its invariants. Where this is not possible, their rich mathematical versatility may enable other methods to circumvent the
problem.

Nested split graphs, also known as threshold graphs, form a subclass of split graphs in which the vertex set is partitioned
into a clique (maximal complete subgraph) and a co-clique, that is an independent subset of vertices (with no edges between
any pair of the independent vertices). Furthermore, NSGs display a structure in which the clique and the co-clique are
partitioned into cellswhich form an equitable vertex partition, that is each vertex of a cell has the same number of neighbours
in each of the cells. Moreover, the adjacencies among the cells impose a structure on the NSG that induces a partition of the
vertices referred to as the NSG partition.
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The questionswe ask are: (a) given a network G, is there a NSG Ĝ that is sufficiently close to G that can be used instead of G
for the purposes of computing network parameters and spectral properties? and (b) how can computation time be reduced
by drawing on the geometric properties of NSGs?

To search for the optimum Ĝ, we devise two distance functions, the scaled walks and the spectral functions, fSW and fλ,
respectively, with the objective tomeasure the rate of convergence of the original given network to an interimNSG G′ picked
by the algorithm considered. The techniques used areMarkov chains and simulated annealing that enable the space of coded
NSGs to be searched. Three perturbation schemes are used for each of the distance functions. These are the ‘hamming’, ‘edge’,
and ‘move’ schemes, all of which will be explained in detail in Section 3.2. The process outputs the best network among all
NSGs that can replace the given network, up to a prescribed tolerance, for the purpose of computing selected invariants
associated with the original network.

The parameters to be computed using the different techniques are derived mainly from sociology, information theory
and physical chemistry. They are Entropy, the Randić, Wiener, Szeged, Co-PI and Estrada indices, and also Gutman’s Graph
Energy and Resolvent Energy. The networks tested come from communication networks, word associations, and molecular
chemistry.

When using Markov chains and simulated annealing to determine a NSG close enough to a given G, the problem centres
on the best distance function and Markov chain perturbation to use for reasonable computation times and reliable values
of graph invariants of the NSG to which the process converges. The different techniques are analysed to see which distance
functions and perturbations correspond to optimized output and well behaved algorithms.

The paper will be organized as follows. In Section 2 we start by presenting various characterization of NSGs. This is
followed in Section 3 by descriptions of the graph parameters to be estimated, and the distance functions to be used as a
measure of closeness between the interimNSG G′ in the simulated annealing process and the original graph G. The simulated
annealing process is presented in Section 4, togetherwith the perturbation schemes used to traverse thewhole space ofNSGs.
In this sectionwe also develop efficient algorithms to determine the graph parameters of Section 3 by taking advantage of the
geometric properties of NSGs. Estimates of selected parameters of G are obtained by calculating them for Ĝ, the limiting NSG.
Practical results are given in Section 5 for a selection of six graphs, where we consider the effect of the simulated annealing
parameters on the NSGs obtained, and also compare the indices for the limiting NSGs with those of the original graphs. In
Section 6 pointers for further work from these seminal ideas are suggested.

2. Characterizations of a nested split graph

A complete graph on n vertices is Kn and a graph on n vertices with no edges is Kn. The path and the cycle on n vertices are
denoted by Pn and Cn, respectively. A disconnected graph consisting of r copies of a graph G is denoted by rG. The number of
edges incident to a vertex v of a graph G on n vertices is the degree ρv . A graph has an isolated vertex if it has a vertex with
no edges incident to it, while a dominating vertex corresponds to a vertex with edges to all the other vertices of the graph.
A vertex v is a duplicate of a vertex u in a graph G if u and v are not adjacent and they have the same neighbouring vertices
in G. Two vertices u and v are co-duplicates if they are adjacent and have the same neighbours.

Different characterizations of NSGs which we shall use in computing the different NSG parameters are now presented.

Theorem 1. The following statements are equivalent for a graph G [18,22]:

(i) G is a NSG;
(ii) G is P4, C4 and 2K2 free;
(iii) G is constructed from K1 by successive additions of an isolated or dominating vertex.

From Theorem 1(iii), the following result gives the construction of a connected NSG from a binary code.

Proposition1. A connectedNSGonn vertices is uniquely coded as a binary string of (n−2) bits. The rth bit is 0 if the (r+1)th vertex
added is an isolated vertex and it is 1 if it is a dominating vertex. This string, which is referred to as theminimum representation
of the NSG, assumes that the first vertex in the construction is an isolated vertex and that the last vertex is a dominating vertex.

Observe that (n − 2) bits are sufficient because in the canonical construction the first vertex is always isolated and the
last vertex has to be dominating. It also follows from Theorem 1(iii) that each intermediate subgraph in the construction of
the NSG G is itself a NSG. If the first bit of the encoding string (reading from the left) is 0, then the intermediate NSG G2 on
two vertices is 2K1, whereas if it is 1, then G2 is K2.

Definition 1. The creation sequence for a connectedNSGon n vertices is the n-tuple c = (c1, c2, . . . , cn)with the first element
c1 = 0, the last element cn = 1, and intermediate elements equal to the bits of the minimum representation.

It is convenient to make use of a more concise form of the creation sequence by encoding repetitions of successive bits.

Definition 2. The compact creation sequence for a connected NSG on n vertices is the r-tuple a = (a1, a2, . . . , ar ), where∑
ai = n, r is even, and for all i, ai ≥ 1 is the length of the ith successive sequence of entries in the creation sequence of the

same value (i.e. with each entry equal to 0 or each entry equal to 1).
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