Some spectral invariants of the neighborhood corona of graphs

Yujun Yang ${ }^{\mathrm{a}, *}$, Vladimir R. Rosenfeld ${ }^{\mathrm{b}}$
${ }^{\text {a }}$ School of Mathematics and Information Science, Yantai University, Yantai, Shandong, 264005, PR China
${ }^{\mathrm{b}}$ Department of Computer Science and Mathematics, Ariel University, Ariel 40700, Israel

A R T I C LE INFO

Article history:

Received 2 January 2017
Received in revised form 11 March 2018
Accepted 26 March 2018
Available online xxxx

Keywords:

Neighborhood corona
Splitting graph
Golden ratio
HOMO-LUMO gap (HOMO-LUMO
separation)
Resistance distance
Kirchhoff index

Abstract

Given two graphs, G_{1} with vertices $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and G_{2}, the neighborhood corona, $G_{1} \star G_{2}$, is the graph obtained by taking n copies of G_{2} and joining by an edge each neighbor of v_{i}, in G_{1}, to every vertex of the i th copy of G_{2}. A special instance $G_{1} \star K_{1}$ of the neighborhood corona is called the splitting graph of G_{1} and has a property that its spectrum consists of all eigenvalues $\phi \lambda$ and $-\phi^{-1} \lambda$, where $\phi=(1+\sqrt{5}) / 2$ is the golden ratio and λ is an arbitrary eigenvalue of G_{1}. In this paper, various spectra invariants of the neighborhood corona of graphs are studied. First, the condition number, the inertia, and the HOMO-LUMO gap of the s-fold splitting graphs are investigated, some of which turn out to have the golden-ratio scaling with the corresponding invariants of the original graph. Then, resistance distances and the Kirchhoff index of the neighborhood corona graph $G_{1} \star G_{2}$ are computed, with explicit expressions being obtained, which extends the previously known result.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider spectral invariants of neighborhood corona of graphs. Given two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$. Suppose that $V\left(G_{1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n_{1}}\right\}$. Then the neighborhood corona, $G_{1} \star G_{2}$, is the graph obtained by taking n_{1} copies of G_{2} and joining by an edge each neighbor of v_{i}, in G_{1}, to every vertex of the i th copy of G_{2} [6]. Suppose further that $\left|V\left(G_{2}\right)\right|=n_{2},\left|E\left(G_{1}\right)\right|=m_{1}$ and $\left|E\left(G_{2}\right)\right|=m_{2}$. Then it is easily verified that the neighborhood corona $G_{1} \star G_{2}$, of G_{1} and G_{2}, has $n_{1}+n_{1} n_{2}$ vertices and $\left(2 n_{2}+1\right) m_{1}+n_{1} m_{2}$ edges [6]. When $G_{2}=K_{1}$, i.e., G_{2} is an isolated vertex, then $G_{1} \star G_{2}$ is called the splitting graph of G_{1} as defined in [13]. For example, the neighborhood corona of $C_{4} \star K_{2}$ and the splitting graph of C_{4} are shown in Fig. 1. Note that in general this operation is not commutative.

In the following, we introduce spectral invariants under consideration. We first introduce some spectral invariants of the adjacency matrix. Let G be a graph with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The adjacency matrix of G, denoted by $A(G)$, is a $n \times n$ matrix whose $i j$-th entry is 1 if v_{i} and v_{j} are adjacent and 0 otherwise. The spectrum $\operatorname{Sp}(G)=\left\{\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}\right\}$ of G is the family of all eigenvalues of the adjacency matrix $A(G)$ of G. If $A(G)$ is nonsingular, then we can consider condition numbers of $A(G)$. Actually, condition numbers are defined for more general nonsingular symmetric matrices. We call a nonsingular symmetric matrix A to be "well conditioned" if the solution of the system of linear equations $A x=b$ is stable, i.e., if it varies little with a small change in the elements of matrix A and in the column b of the free terms. Some quantitative features of conditionality are known in literature-the so-called condition numbers. One of such numbers is $\operatorname{Cond}(A)=\lambda_{1} /\left|\lambda_{\mid m i n}\right|$, where λ_{1} is the maximum (positive) eigenvalue, and $\lambda_{|\min |}$ is the minimum-modulus eigenvalue, of A, respectively. The smaller $\operatorname{Cond}(A)$ is, the better it is for solving a respective system of linear equations; and conversely, the greater is this

[^0]

Fig. 1. The neighborhood corona $C_{4} \star K_{2}$ (left) and the splitting graphs of C_{4} (right).
quantity, the less stable may be the solution. Another spectral invariant is the inertia of G, which is defined to be the triple $\operatorname{In}(G)=\left(i_{+}(G), i_{-}(G), i_{0}(G)\right)$, where $i_{+}(G), i_{-}(G), i_{0}(G)$ are the numbers of the positive, negative, and zero eigenvalues of $A(G)$ including multiplicities, respectively. Traditionally, the number $i_{0}(G)$ is called the nullity of $G . i_{+}(G)$ and $i_{-}(G)$ are called the positive, negative index of inertia, respectively. The last invariant is the HOMO-LUMO gap (or HOMO-LUMO separation) $\Delta(G)$ of G, which is defined after the Hückel method of molecular orbitals, as the difference $\lambda_{H}-\lambda_{L}$, where $H=\left\lfloor\frac{n+1}{2}\right\rfloor$ and $L=\left\lceil\frac{n+1}{2}\right\rceil$. λ_{H} and λ_{L} are called median eigenvalues of G. Many physicochemical parameters of molecules are determined by or are dependent upon the HOMO-LUMO gap. The HOMO-LUMO gap is very important in quantum physics, because it determines the conductivity of a substance. Usually, the smaller $\Delta(G)$ is, the greater is the conductivity.

Now we turn to the spectral invariants of the Laplacian matrix of G. Recall that the Laplacian matrix $L(G)$, of G, is defined as $L(G)=D(G)-A(G)$, where $D(G)$ is the diagonal matrix of vertex degrees. For a connected graph G, it is well known that $L(G)$ is positive semidefinite, and that it has exactly one zero eigenvalue, and all the other eigenvalues are positive. Here, we consider the resistance distance and the Kirchhoff index of graphs, whose definitions seem to be far apart from the Laplacian spectra, but which turn out to be spectral invariants of the Laplacian matrix. The resistance distance [9] between any two vertices v_{i} and v_{j} of G, denoted by $\Omega_{G}\left(v_{i}, v_{j}\right)$, is defined to be the net effective resistance between them in the electrical network, constructed from G by replacing each edge with a unit resistor. The Kirchhoff index (or effective resistance) of G [9], denoted by $K f(G)$, is defined as the sum of resistance distances between all pairs of vertices, i.e.,

$$
K f(G)=\sum_{i<j} \Omega_{G}\left(v_{i}, v_{j}\right)
$$

The resistance distance and the Kirchhoff index are spectral invariants of the Laplacian matrix that can be computed as follows:

Theorem 1 ([8]). Let G be a connected graph of order n with Laplacian eigenvalues $0=\theta_{1}, \theta_{2}, \ldots, \theta_{n}$. Suppose $\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{n}$ are corresponding normalized orthogonal eigenvectors. Then,

$$
\begin{equation*}
\Omega_{G}(i, j)=\sum_{k=2}^{n} \frac{\left(x_{k i}-x_{k j}\right)^{2}}{\theta_{k}} \tag{1}
\end{equation*}
$$

where $x_{k i}$ and $x_{k j}$ are the ith and jth components of \mathbf{X}_{k}, respectively.
Theorem 2 ([21,7]). Let G be a connected graph of order n with Laplacian eigenvalues $0=\theta_{1}, \theta_{2}, \ldots, \theta_{n}$. Then, the Kirchhoff index of G can be computed as

$$
\begin{equation*}
K f(G)=n \sum_{i=2}^{n} \frac{1}{\theta_{i}} \tag{2}
\end{equation*}
$$

Actually, the study of resistance distance could be dated back to the classical work of Kirchhoff. In addition, owing to the work of Klein and Randić in 1993 [9], people notify that the effective resistance is a distance function defined on graphs. From then on, resistance distance and the Kirchhoff index have been widely studied in mathematics, physics and chemistry literature. For more information, the readers are referred to [18-20,11,17,16,14,2] and references therein.

The rest of this paper is organized as follows. In Section 2, the spectral and Laplacian spectral of the neighborhood corona of graphs are given, with some preliminary consequences being presented. Section 3 describes the main results of the paper, which consists of two subsections. In Section 3.1, the condition number, the inertia, and the HOMO-LUMO gap of the s-fold splitting graphs are investigated, some of which turn out to have a golden-ratio scaling with the invariants of the original

https://daneshyari.com/en/article/8941825

Download Persian Version:

https://daneshyari.com/article/8941825

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: yangyj@yahoo.com (Y. Yang), vladimir_rosenfeld@yahoo.com (V.R. Rosenfeld).

