ARTICLE IN PRESS

Discrete Applied Mathematics **(111**)

Note

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

On the precise value of the strong chromatic index of a planar graph with a large girth

Gerard Jennhwa Chang^{a,b}, Guan-Huei Duh^{a,*}

^a Department of Mathematics, National Taiwan University, Taipei 10617, Taiwan

^b National Center for Theoretical Sciences, Mathematics Division, 2F of Astronomy-Mathematics Building, National Taiwan University,

Taipei 10617, Taiwan

ARTICLE INFO

Article history: Received 3 October 2015 Received in revised form 30 January 2018 Accepted 28 March 2018 Available online xxxx

Keywords: Strong chromatic index Planar graph Girth

ABSTRACT

A strong *k*-edge-coloring of a graph *G* is a mapping from E(G) to $\{1, 2, ..., k\}$ such that every pair of distinct edges at distance at most two receive different colors. The strong chromatic index $\chi'_s(G)$ of a graph *G* is the minimum *k* for which *G* has a strong *k*-edge-coloring. Denote $\sigma(G) = \max_{xy \in E(G)} \{ \deg(x) + \deg(y) - 1 \}$. It is easy to see that $\sigma(G) \leq \chi'_s(G)$ for any graph *G*, and the equality holds when *G* is a tree. For a planar graph *G* of maximum degree Δ , it was proved that $\chi'_s(G) \leq 4\Delta + 4$ by using the Four Color Theorem. The upper bound was then reduced to 4Δ , $3\Delta + 5$, $3\Delta + 1$, 3Δ , $2\Delta - 1$ under different conditions for Δ and the girth. In this paper, we prove that if the girth of a planar graph *G* is large enough and $\sigma(G) \geq \Delta(G) + 2$, then the strong chromatic index of *G* is precisely $\sigma(G)$. This result reflects the intuition that a planar graph with a large girth locally looks like a tree.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

A strong *k*-edge-coloring of a graph *G* is a mapping from E(G) to $\{1, 2, ..., k\}$ such that every two distinct edges at distance at most two receive different colors. It induces a proper vertex coloring of $L(G)^2$, the square of the line graph of *G*. The strong chromatic index $\chi'_{S}(G)$ of *G* is the minimum *k* for which *G* has a strong *k*-edge-coloring. This concept was introduced by Fouquet and Jolivet [18,19] to model the channel assignment in some radio networks. For more applications, see [4,29,32,31,23,36].

A Vizing-type problem was asked by Erdős and Nešetřil, and further strengthened by Faudree, Schelp, Gyárfás and Tuza to give an upper bound for $\chi'_{s}(G)$ in terms of the maximum degree $\Delta = \Delta(G)$:

Conjecture 1 (Erdős and Nešetřil '88 [15] '89 [16], Faudree et al. '90 [17]). If G is a graph with maximum degree Δ , then $\chi'_{s}(G) \leq \Delta^{2} + \lfloor \frac{\Delta}{2} \rfloor^{2}$.

As demonstrated in [17], there are indeed some graphs that reach the conjectured upper bound.

By a greedy algorithm, it can be easily seen that $\chi'_s(G) \leq 2\Delta(\Delta - 1) + 1$. Molloy and Reed [27] used the probabilistic method to show that $\chi'_s(G) \leq 1.998\Delta^2$ for maximum degree Δ large enough. Recently, this upper bound was improved by Bruhn and Joos [8] to $1.93\Delta^2$.

For small maximum degrees, the cases $\Delta = 3$ and 4 were studied. Andersen [1] and Horák et al. [21] proved that $\chi'_{s}(G) \leq 10$ for $\Delta(G) \leq 3$ independently; and Cranston [12] showed that $\chi'_{s}(G) \leq 22$ when $\Delta(G) \leq 4$.

According to the examples in [17], the bound is tight for $\Delta = 3$, and the best we may expect for $\Delta = 4$ is 20.

* Corresponding author. *E-mail addresses:* gjchang@math.ntu.edu.tw (G.J. Chang), r03221028@ntu.edu.tw (G.-H. Duh).

https://doi.org/10.1016/j.dam.2018.03.075 0166-218X/© 2018 Elsevier B.V. All rights reserved. 2

ARTICLE IN PRESS

G.J. Chang, G.-H. Duh / Discrete Applied Mathematics [(1111)]

The strong chromatic index of a few families of graphs are examined, such as cycles, trees, *d*-dimensional cubes, chordal graphs, Kneser graphs, *k*-degenerate graphs, chordless graphs and C_4 -free graphs, see [5,11,14,17,26,39,41]. As for Halin graphs, refer to [10,24,25,34,35]. For the relation to various graph products, see [37].

Now we turn to planar graphs.

Faudree et al. used the Four Color Theorem [2,3] to prove that planar graphs with maximum degree Δ are strongly $(4\Delta + 4)$ -edge-colorable [17]. The conclusion can be extended to K_5 -minor free graphs [28]. Moreover, every planar *G* with girth at least 7 and $\Delta \ge 7$ is strongly 3Δ -edge-colorable by applying a strengthened version of Vizing's Theorem on planar graphs [33,38] and Grőtzsch's theorem [20].

The following results are obtained by using a discharging method:

Theorem 2 (Hudák et al. '14 [22]). If G is a planar graph with girth at least 6 and maximum degree at least 4, then $\chi'_{s}(G) \leq 3\Delta(G) + 5$.

Theorem 3 (Hudák et al. '14 [22]). If G is a planar graph with girth at least 7, then $\chi'_{s}(G) \leq 3\Delta(G)$.

And the bounds are improved by Bensmail et al.

Theorem 4 (Bensmail et al. '14 [6]). If G is a planar graph with girth at least 6, then $\chi'_{s}(G) \leq 3\Delta(G) + 1$.

Theorem 5 (Bensmail et al. '14[6]). If G is a planar graph with girth at least 5 or maximum degree at least 7, then $\chi'_{c}(G) \leq 4\Delta(G)$.

It is also interesting to see the asymptotic behavior of strong chromatic index when the girth is large enough.

Theorem 6 (Borodin and Ivanova '13 [7]). If G is a planar graph with maximum degree $\Delta \ge 3$ and girth at least $40\lfloor \frac{\Delta}{2} \rfloor + 1$, then $\chi'_{s}(G) \le 2\Delta - 1$.

Theorem 7 (Montassier, Pêcher and Raspaud '13 [28]). If G is a planar graph with maximum degree $\Delta \ge 4$ and girth at least $10\Delta + 46$, then $\chi'_{s}(G) \le 2\Delta - 1$.

Theorem 8 (Wang and Zhao '15 [40]). If G is a planar graph with maximum degree $\Delta \ge 4$ and girth at least $10\Delta - 4$, then $\chi'_s(G) \le 2\Delta - 1$.

The concept of maximum average degree is also an indicator to the sparsity of a graph. A folklore lemma, which can be proved by Euler's formula, points out the relation between the girth of a planar graph and its maximum average degree.

Lemma 9. A planar graph G with girth g has the maximum average degree mad(G) $< 2 + \frac{4}{g-2}$.

Many results concerning planar graphs with large girths can be extended to general graphs with small maximum average degrees and large girths. Strong chromatic index is no exception.

Theorem 10 (Wang and Zhao '15 [40]). Let G be a graph with maximum degree $\Delta \ge 4$. If $mad(G) < 2 + \frac{1}{3\Delta - 2}$, the even girth is at least 6 and the odd girth is at least $2\Delta - 1$, then $\chi'_{s}(G) \le 2\Delta - 1$.

In terms of maximum degree Δ , the bound $2\Delta - 1$ is best possible. We seek for a better parameter as a refinement. Define

$$\sigma(G) := \max_{xy \in E(G)} \{ \deg(x) + \deg(y) - 1 \}$$

An *antimatching* is an edge set $S \subseteq E(G)$ in which any two edges are at distance at most 2, thus any strong edge-coloring assigns distinct colors on *S*. Notice that each color set of a strong edge-coloring is an induced matching, and the intersection of an induced matching and an antimatching contains at most one edge. The fact suggests a dual problem to strong edge-coloring: finding a maximum antimatching of *G*, whose size is denoted by am(*G*). For any edge $xy \in E(G)$, the edges adjacent to xy form an antimatching of size deg(x) + deg(y) – 1. Together with the weak duality, this gives the inequality

$$\chi'_{s}(G) \ge \operatorname{am}(G) \ge \sigma(G).$$

By induction, we see that for any nontrivial tree T, $\chi'_{s}(T) = \sigma(T)$ attains the lower bound [17]. Based on the intuition that a planar graph with large girth locally looks like a tree, in this paper, we focus on this class of graphs. More precisely, we prove the following main theorem:

Theorem 11 (*Main Theorem*). If G is a planar graph with $\sigma = \sigma(G) \ge 5$, $\sigma \ge \Delta(G) + 2$ and girth at least $5\sigma + 16$, then $\chi'_{s}(G) = \sigma$.

We also make refinement on the girth constraint and gain a stronger result in Section 4.

The condition $\sigma \ge \Delta(G) + 2$ is necessary as shown in the following example. Suppose $n \ge 1$ and $d \ge 2$. Construct $G_{3n+1,d}$ from the cycle $(x_1, x_2, \ldots, x_{3n+1})$ by adding d - 2 leaves adjacent to each x_{3i} for $1 \le i \le n$. Then $\sigma(G_{3n+1,d}) = d + 1 < d + 2 = \Delta(G_{3n+1,d}) + 2$. See Fig. 1 for $G_{3n+1,4}$.

Please cite this article in press as: G.J. Chang, G.-H. Duh, On the precise value of the strong chromatic index of a planar graph with a large girth, Discrete Applied Mathematics (2018), https://doi.org/10.1016/j.dam.2018.03.075.

Download English Version:

https://daneshyari.com/en/article/8941834

Download Persian Version:

https://daneshyari.com/article/8941834

Daneshyari.com