Safe number and integrity of graphs

Shinya Fujita ${ }^{\text {a }}$, Michitaka Furuya ${ }^{\text {b,* }}$
a International College of Arts and Sciences, Yokohama City University, 22-2, Seto, Kanazawa-ku, Yokohama, 236-0027, Japan
${ }^{\text {b }}$ College of Liberal Arts and Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan

ARTICLE INFO

Article history:

Received 20 June 2017
Received in revised form 21 March 2018
Accepted 28 March 2018
Available online xxxx

Keywords:

Integrity
Safe number
Connected safe number

Abstract

For a connected graph $G=(V(G), E(G))$, a non-empty subset S of $V(G)$ is a safe set if, for every component C of $G[S]$ and every component D of $G-S$, we have $|V(C)| \geq|V(D)|$ whenever there exists an edge of G between C and D. If $G[S]$ is connected, then S is called a connected safe set. The safe number $s(G)$ of G is defined as $s(G):=\min \{|S|: S$ is a safe set of $G\}$, and the connected safe number $\operatorname{cs}(G)$ of G is defined as $\operatorname{cs}(G):=\min \{|S|: S$ is a connected safe set of $G\}$. The integrity of a graph G is defined as $I(G):=\min \{|S|+\tau(G-S): S \subseteq V(G)\}$, where $\tau(G-S)$ is the order of the largest component of $G-S$.

In this paper, we discuss a relationship between the (connected) safe number and the integrity in a connected graph.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In much literature, several measures of the reliability of a communication network have been considered. In order to introduce a reasonable measure of network reliability, we consider some situations on a graph network model, where we have some possible attacks by outside enemies who want to destroy the graph network efficiently. Motivated by disrupting a graph network by removing a small set of vertices such that the remaining connected components are small, the integrity of a graph was introduced by Barefoot et al. [4]. This measure represents, in some sense, a trade-off between the amount of work done to damage the network and how badly the network is damaged. The formal definition of the integrity of a graph is given as follows.

For a graph H, let $\mathcal{C}(H)$ denote the family of components of H, and set $\tau(H)=\max \{|V(C)|: C \in \mathcal{C}(H)\}$. The integrity of a graph G is defined as $I(G):=\min \{|S|+\tau(G-S): S \subseteq V(G)\}$. A subset S of $V(G)$ satisfying $|S|+\tau(G-S)=I(G)$ is called an integrity set of G. The integrity of some basic graph classes, such as paths, cycles and so on were determined by Bagga et al. [2], and Vince [9] showed that any cubic graph G of order n satisfies $I(G)<(n+2 \sqrt{6 n}+1) / 3$. For other results, we also refer the reader to [8] by Goddard.

On the other hand, another new relevant measure, the safe number of a connected graph, was recently introduced by Fujita et al. [7].

Let G be a connected graph of order n. For a pair of vertex disjoint subsets M, N of $V(G)$, let $E_{G}(M, N)$ be the set of edges between M and N in G. A nonempty set $S \subseteq V(G)$ is a safe set of G if for all $C \in \mathcal{C}(G[S])$ and $D \in \mathcal{C}(G-S)$ with $E_{G}(V(C), V(D)) \neq \emptyset,|V(C)| \geq|V(D)|$. A safe set S of G is connected if $G[S]$ is connected. The minimum cardinality of a safe set (resp. a connected safe set) of G, denoted by $s(G)$ (resp. cs(G)), is the safe number (resp. the connected safe number) of G.

From the definition, it is easy to check the following.
Lemma 1.1 (Fujita et al. [7]). Let G be a connected graph of order $n \geq 2$. Then $s(G) \leq c s(G) \leq\left\lceil\frac{n}{2}\right\rceil$.

[^0]It was shown in [7] that, for an integer p, the problem for asking whether $c(G) \leq p$ is NP-complete. On the positive side, Fujita et al. [7] showed that this problem can be solved in linear time on trees. Also, Águeda et al. [1] showed that the same problem concerning $s(G)$ can be solved in $O\left(n^{5}\right)$ time on trees.

As a counterpart in the direction of the graph integrity, Clark et al. [5] showed that, for an integer p, the problem for asking whether $I(G) \leq p$ is NP-complete, even when restricted to planar graphs. Fellows and Stueckle [6] showed that the problem can be solved in $O\left(p^{3 p} n\right)$ time, and is thus fixed-parameter tractable when parameterized by p.

In view of these results, we see that determining $c s(G), s(G), I(G)$ seems quite hard in general. In our attempt to determine these parameters, studying the magnitude relation among those parameters would be important, as it could give us a good insight to construct polynomial algorithms to determine these parameters in certain classes of graphs.

Motivated by this viewpoint, in this paper, we seek a relationship between the (connected) safe number and the integrity of a graph. We start with an upper bound on $I(G)$ in terms of the (connected) safe number. We now present the following proposition, which was originally shown in Bapat et al. [3] in a more generalized form. We give the proof for the convenience of readers.

Proposition 1.2 (Bapat et al. [3]). Let G be a connected graph. Then $I(G) \leq 2 s(G)(\leq 2 c s(G))$.
Proof. Let S be a safe set of G with $|S|=s(G)$, and let $D \in \mathbb{C}(G-S)$ with $|V(D)|=\tau(G-S)$. Since G is connected, there exists a vertex $x \in S$ such that $N_{G}(x) \cap V(D) \neq \emptyset$. Let C be the component of $G[S]$ containing x. Then $E_{G}(V(C), V(D)) \neq \emptyset$, and hence $|V(C)| \geq|V(D)|$. Consequently, we have

$$
I(G) \leq|S|+\tau(G-S)=|S|+|V(D)| \leq|S|+|V(C)| \leq 2|S|=2 s(G),
$$

as desired.
Let K_{m} denote the complete graph of order n. For two graphs H_{1} and H_{2} and a positive integer l, let $H_{1}+H_{2}$ and $l H_{1}$ denote the join of H_{1} and H_{2} and the disjoint union of l copies of H_{1}, respectively. Now we focus on the graph $K_{m}+l K_{m}$. It is clear that $I\left(K_{m}+I K_{m}\right)=2 m$ and $s\left(K_{m}+I K_{m}\right)=m$. In particular, $I\left(K_{m}+I K_{m}\right)=2 s\left(K_{m}+I K_{m}\right)$. Thus Proposition 1.2 is best possible.

Our main result in this paper is to give the tight lower bound on $I(G)$ in terms of the (connected) safe number.
Theorem 1.3. Let G be a connected graph. Then
(i) $I(G) \geq 2 \sqrt{s(G)-2}+1$ if G is not a star, and
(ii) $I(G) \geq 2 \sqrt{c s(G)-1}$.

Remark 1. If a graph G is a star, then $s(G)=c s(G)=1$. On the other hand, if a connected graph G satisfies $s(G)=1$, then every component of $G-S$ consists of one vertex where S is a safe set of G with $|S|=1$, and hence G is a star. Consequently, a connected graph G is not a star if and only if $s(G) \geq 2$. In particular, the value $s(G)-2$ in Theorem 1.3(i) is a non-negative integer.

Let G be a connected graph. For $x, y \in V(G)$, let $d_{G}(x, y)$ denote the distance between x and y in G. For $x \in V(G)$, the integer $\operatorname{ecc}_{G}(x):=\max \left\{d_{G}(x, y): y \in V(G)\right\}$ is called the eccentricity of x. The radius of G is the integer $\operatorname{rad}(G):=\min \left\{\operatorname{ecc}_{G}(x): x \in\right.$ $V(G)\}$. A vertex x is a center of G if $\operatorname{ecc}_{G}(x)=\operatorname{rad}(G)$.

Our second main result claims that the ratio of the (connected) safe number and the integrity can be bounded by the radius of a connected graph.

Theorem 1.4. Let G be a connected graph of order $n \geq 2$. Then $I(G) \geq \frac{\operatorname{cs}(G)}{\operatorname{rad}(G)}\left(\geq \frac{s(G)}{\operatorname{rad}(G)}\right)$.
From our results, we know that, roughly speaking, the value $I(G)$ ranges from $2 \sqrt{c s(G)}$ to $2 s(G)$. It would be natural to ask what kind of graphs always satisfy $I(G)>c s(G)($ or, $I(G)<c s(G), I(G)>s(G), I(G)=c s(G), \ldots$ and so on $)$.

Highly connected graphs could be an answer to the above question.
Proposition 1.5. Let G be a graph of order n. If G is $\left\lceil\frac{n}{2}\right\rceil$-connected, then $I(G)>c s(G)$ holds.
Proof. Since any cut set of G has at least $\left\lceil\frac{n}{2}\right\rceil$ vertices, we have $I(G)>\left\lceil\frac{n}{2}\right\rceil$. Hence, in view of Lemma 1.1, it follows that $I(G)>c s(G)$.

Remark 2. The complete bipartite graph $K_{\frac{n}{2}-1, \frac{n}{2}+1}$ shows that the connectivity condition in Proposition 1.5 is best possible, as $I\left(K_{\frac{n}{2}-1, \frac{n}{2}+1}\right)=c s\left(K_{\frac{n}{2}-1, \frac{n}{2}+1}\right)=\frac{n}{2}$.

The rest of this paper is organized as follows: In Section 2, we prove Theorem 1.3. In Section 3, we discuss the sharpness of Theorem 1.3. In Section 4, we prove Theorem 1.4.

https://daneshyari.com/en/article/8941835

Download Persian Version:

https://daneshyari.com/article/8941835

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: shinya.fujita.ph.d@gmail.com (S. Fujita), michitaka.furuya@gmail.com (M. Furuya).

