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a b s t r a c t

The von Neumann entropy of a nonempty graph provides a mean of characterizing the
information content of the quantum state of a physical system. We give sharp upper and
lower bounds for the von Neumann entropy of a nonempty graph using graph parameters
and characterize the graphswhen each bound is attained. These upper (lower, respectively)
bounds are shown to be incomparable in general by examples.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In quantummechanics, the state of a physical system is represented by apositive semi-definite hermitianmatrixwith unit
trace, called its density matrix. The von Neumann entropy of a quantum state is defined as the Shannon entropy associated
with the eigenvalues of its densitymatrix. It provides amean of characterizing the information content of the quantum state.

We consider simple graphs. Let G be a graph on n vertices with vertex set V (G) and edge set E(G). The adjacency matrix
of G is the n × n matrix A(G) = (auv), where auv = 1 if u and v are adjacent in G, and 0 otherwise. For u ∈ V (G), dG(u) or du
denotes the degree of u in G. The matrix L(G) = D(G) − A(G) is known as the (combinatorial) Laplacian matrix of G, where
D(G) is the degree diagonal matrix of G. For a nonempty graph G, let σ (G) =

1
dG
L(G), where dG is the trace of L(G), i.e., the sum

of degrees of G, i.e., 2|E(G)|. Note that σ (G) is a positive semi-definite hermitian matrix with unit trace. It may be interpreted
as the density matrix of a physical system. We call σ (G) the density matrix of G. Let ρ1, . . . , ρn be the eigenvalues of σ (G),
arranged in a non-increasing order. Then ρn = 0 and the multiplicity of eigenvalue 0 for σ (G) is equal to the number of
components of G. The von Neumann entropy of G is defined as [2]

s(G) = −

n∑
i=1

ρi log2 ρi

with convention that 0 log2 0 = 0. Thus, s(G) = −
∑n−1

i=1 ρi log2 ρi.
Braunstein et al. [2] showed that, for a nonempty graph G on n vertices,

0 ≤ s(G) ≤ log2(n − 1)

with left equality if and only if G has a single edge and with right equality if and only if G is (isomorphic to) the complete
graph Kn. For a graph G with n vertices and m ≥ 1 edges, let Z = Z(G) =

∑
u∈V (G)d

2
u. Let Sn be the star on n vertices. Among
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others, Dairyko et al. [5] showed that

s(G) ≥ − log2
2m + Z
4m2 , (1.1)

and they used this inequality to deduce sufficient conditions that s(G) ≥ s(Sn). Recall that, early, it was asked in [16] whether
Sn minimizes von Neumann entropy among connected graphs with n ≥ 2 vertices, which was conjectured to be true in [5].
The von Neumann entropies of the Erdős–Rényi random graphs andmultipartite generalizations have been studied in [6,12].
Related work on the von Neumann entropies may be found in [3,10].

In this paper, we find upper and lower bounds for the von Neumann entropy of a nonempty graph in terms of graph
parameters that are easy to discern to some extent such as the number of vertices, the number of edges, the maximum
degree, the degree sequence, the conjugate degree sequence, and the quantity Z , and determine those graphs that attain the
bounds. Particularly, we determine the graphs attaining the bound in (1.1). We also compare these bounds by examples.

2. Preliminaries

For a graph G on n vertices, let λ1, . . . , λn be the Laplacian eigenvalues of G (i.e., the eigenvalues of L(G)), arranged in a
non-increasing order. When more than one graph is under discussion, we may write λi(G) in place of λi. We mention that
λn−1 is known as the algebraic connectivity of G, see [7]. Obviously, λi = 2mρi, wherem = |E(G)|.

Recall that, for a nonempty graph Gwith n vertices,
n−1∑
i=1

ρi = tr(σ (G)) = 1.

This fact will be used frequently.

Lemma 2.1 ([15]). Let G be a nonempty graph with maximum degree ∆. Then λ1 ≥ ∆ + 1with equality when G is connected on
n vertices if and only if ∆ = n − 1.

For a graph G, let G be its complement.

Lemma 2.2 ([15]). Let G be a graph with n vertices. Then the Laplacian eigenvalues of G are n − λn−1(G), . . . , n − λ1(G), 0.

Lemma 2.3 ([15]). Let G be a connected graph with diameter d. Suppose that G has exactly k distinct Laplacian eigenvalues. Then
d + 1 ≤ k.

Lemma 2.4 ([15]). Let G be a graph on n vertices with minimum degree δ and G ≇ Kn. Then λn−1 ≤ δ.

For a graphG on n vertices, letµ1 be the largest eigenvalue ofA(G), and q1 the largest eigenvalue ofQ (G) = D(G)+A(G). It is
known thatµ1 ≥

√
Z
n with equality when G is connected if and only if G is regular or bipartite semiregular (i.e., bipartite and

vertices in the same color class have equal degrees), see [11]. Let x be the nonnegative unit eigenvector of A(G) corresponding
to µ1. Then q1 ≥ x⊤Q (G)x =

∑
uv∈E(G)(xu + xv)2 ≥ 2 · 2

∑
uv∈E(G)xuxv = 2µ1 with equalities if and only if Q (G)x = q1x and

xu = xv for any uv ∈ E(G) [4]. Thus q1 ≥ 2µ1 with equality when G is connected if and only if G is regular. If G is bipartite,
then λ1 = q1 (see [15]), and thus λ1 ≥ 2

√
Z
n with equality when G is connected if and only if G is regular. Thus, we have the

following lemma.

Lemma 2.5. Let G be a bipartite graph on n vertices. Then λ1 ≥ 2
√

Z
n with equality when G is connected if and only if G is regular.

For non-increasing sequences x = (x1, . . . , xn) and y = (y1, . . . , yn), x is majorized by y, denoted by x ⪯ y, if∑j
i=1xi ≤

∑j
i=1yi for j = 1, . . . , n, and equality holds when j = n.

Lemma 2.6 ([8]). Let G be a graph with non-increasing degree sequence (d1, . . . , dn), where dn ≥ 1. Then

(d1 + 1, d2, . . . , dn−1, dn − 1) ⪯ (λ1, . . . , λn).

For the (non-increasing) degree sequence (d1, . . . , dn) of a graph G, its conjugate degree sequence is (d∗

1, . . . , d
∗
n), where

d∗

i = |{j : dj ≥ i}|. The following lemma was conjectured in [9] and was confirmed in [1].

Lemma 2.7. Let G be a graph with conjugate degree sequence (d∗

1, . . . , d
∗
n). Then

(λ1, . . . , λn) ⪯ (d∗

1, . . . , d
∗

n).
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