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a b s t r a c t

A multiple-relaxation-time (MRT) lattice Boltzmann (LB) model is developed for simulating double-
diffusive convection in porous media at the representative elementary volume scale. In the model, the
equilibrium moments of the temperature and concentration distributions have been modified, which
makes the effective thermal diffusivity and heat capacity ratio as well as the effective mass diffusivity
and porosity decoupled. Numerical tests demonstrate that the present model can serve as an accurate
numerical method for simulating double-diffusive convection in porous media.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Double-diffusive convection in fluid-saturated porous media
has attracted a great deal of attention because it is a common phe-
nomenon in nature, and it is also frequently encountered in a wide
variety of engineering applications, such as geophysical systems,
the migration of moisture contained in fibrous insulation, the
transport of contaminants in groundwater, the underground
disposal of nuclear wastes [1–7]. Over the last several decades,
double-diffusive convection in porous media has been studied
numerically by many researchers. Conventional numerical meth-
ods, such as the finite-element method (FEM) [1,2], the finite-
volume method (FVM) [3,4], and the finite-difference method
(FDM) [5], have been employed to study double-diffusive convec-
tion problems in porous media. Comprehensive reviews of the
subject have been given by Ingham and Pop [6], and Nield and
Bejan [7].

The lattice Boltzmann (LB) method, as a mesoscopic numerical
technique originated from the lattice-gas automata (LGA) method
[8], has achieved great success in simulating complex fluid flows
and modeling complex physics in fluids [9–16]. With its roots in
mesoscopic gas kinetic theory, the LB method exhibits some attrac-
tive advantages, such as clear physical pictures, inherently parallel
nature, simple algorithm, and easy implementation [9]. Recently,

the LB method has also been successfully applied to study
double-diffusive convection problems in porous media. Xu et al.
[17] investigated double-diffusive convection around a heated
cylinder in a square cavity filled with a porous medium at the
representative elementary volume (REV) scale. Xu et al.’s study
was based on the Brinkman-extended Darcy model. In the litera-
ture [18], Chen et al. have developed an LB model for simulating
double-diffusive convection in fluid-saturated porous media at
the REV scale. Chen et al.’s model was developed based on the gen-
eralized non-Darcy model, and by introducing a reference porosity
into the equilibrium concentration distribution, it can work well
not only for uniform porous media but also for non-uniform porous
media.

Up to now, although some progress has been made in studying
double-diffusive convection in porous media at the REV scale,
some drawbacks of the LB method are apparent. For instance, the
effective thermal diffusivity and (reference) heat capacity ratio as
well as the effective mass diffusivity and (reference) porosity is
coupled. The artificial couplings may do harm to the accuracy of
the LB method. Therefore, the objective of this work is to propose
an LB model for simulating double-diffusive convection in porous
media, in which the effective thermal diffusivity and heat capacity
ratio as well as the effective mass diffusivity and porosity is decou-
pled. Considering that the multiple-relaxation-time (MRT) collision
model [19,20] is superior to its Bhatnagar-Gross-Krook (BGK)
counterpart [21] in terms of accuracy and numerical stability, the
MRT collision model is employed in this work.
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2. Macroscopic governing equations

Based on the generalized non-Darcy model [22–24], the macro-
scopic governing equations for double-diffusive convection in por-
ous media at the REV scale can be written as follows [1–3,7]:
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where u, p, T , and C are the velocity, pressure, temperature, and
concentration, respectively; q0 is the reference density, / is the
porosity, te is the effective viscosity, ae is the effective thermal
diffusivity, and De is the effective mass diffusivity;
r ¼ /þ ð1� /ÞðqscpsÞ=ðqf cpf Þ is the heat capacity ratio, in which
qf (qs) and cpf (cps) are the density and specific heat of the fluid
(solid matrix), respectively; F ¼ ðFx; FyÞ is the total body force
induced by the porous matrix and other external forces, which
can be expressed as [25,26]

F ¼ �/t
K

u� /F/ffiffiffiffi
K
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where t is the viscosity of the fluid (t is not necessarily the same as
te); K and F/ are the permeability and inertial coefficient
(Forchheimer coefficient) of the porous medium, respectively. The
buoyancy force G is given by G ¼ g½bTðT � T0Þ þ bCðC � C0Þ�j, where
T0 and C0 are the reference temperature and concentration, respec-
tively; bT and bC are the thermal and concentration expansion
coefficients, respectively; g is the gravitational acceleration, and j
is the unit vector in the y-direction.

The inertial coefficient F/ and permeability K depend on the
geometry of the porous media. For flow over a packed bed of par-
ticles, according to Ergun’s experimental investigations [27], F/

and K can be expressed as [28]

F/ ¼ 1:75ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where dp is the solid particle diameter (or mean pore diameter).
The system governed by Eqs. (1)–(4) is characterized by several

dimensionless characteristic parameters: the Prandtl number
Pr ¼ t=ae, the thermal Rayleigh number RaT ¼ gbTDTL

3=ðtaeÞ, the
solutal Rayleigh number RaC ¼ gbCDCL

3=ðtDeÞ, the Darcy number
Da ¼ K=L2, the viscosity ratio J ¼ te=t, the Reynolds number
Re ¼ LU=t, the Lewis number Le ¼ ae=De, the Schmidt number
Sc ¼ t=De, and the buoyancy ratio N ¼ bCDC=ðbTDTÞ, where L is
the characteristic length, U is the characteristic velocity, DT is
the temperature difference (characteristic temperature), and DC
is the concentration difference (characteristic concentration).

3. MRT-LB model for double-diffusive convection in porous
media

The flow field governed by Eqs. (1) and (2) can be solved by the
MRT-LB model proposed in our previous work [29]. In what
follows, we only present the MRT-LB equations for the temperature
and concentration fields, which are given by

gðxþ edt; t þ dtÞ ¼ gðx; tÞN�1Hðng � neq
g Þjðx;tÞ; ð7Þ

hðxþ edt; t þ dtÞ ¼ hðx; tÞN�1Q ðnh � neq
h Þjðx;tÞ; ð8Þ

respectively, where the bold-face symbols (g; h, ng , and nh) denote

b-dimensional column vectors, e.g., g ¼ ðg0; . . . ; gb�1ÞT (b represents
the number of discrete velocities); giðx; tÞ and hiðx; tÞ are the tem-
perature and concentration distribution functions, respectively; N
is the transformation matrix, H and Q are relaxation matrices.

The transformation matrix N linearly maps the discrete
distribution functions represented by g and h to their moments
represented by ng and nh, i.e., ng ¼ Ng and nh ¼ Nh. Through the
transformation matrix N, the collision processes of the MRT-LB
Eqs. (7) and (8) can be executed in moment space M ¼ Rb, while
the streaming processes are still carried out in velocity space
V ¼ Rb. In this work, the D2Q5 lattice is employed without loss
of generality. The five discrete velocities feig of the D2Q5 lattice
are given by

ei ¼
ð0;0Þ; i ¼ 0;
ðcos½ði� 1Þp=2�; sin½ði� 1Þp=2�Þc; i ¼ 1 � 4;

�
ð9Þ

where c ¼ dx=dt is the lattice speed with dt and dx being the dis-
crete time step and lattice spacing, respectively. The lattice speed c
is set to be 1 (dx ¼ dt) in this work.

For the D2Q5 model, the transformation matrix N can be chosen
as [30]

N ¼

1 1 1 1 1
0 1 0 �1 0
0 0 1 0 �1
�4 1 1 1 1
0 1 �1 1 �1

2
6666664

3
7777775
: ð10Þ

Accordingly, the equilibrium moment vectors neq
g and neq

h are
defined as follows

neq
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where - 2 ð0;1Þ is a model parameter. The temperature and con-
centration can be obtained via

rT ¼
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The equilibrium distributions geq
i and heq

i in velocity space are
given by
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respectively, where f ~wig are the weight coefficients: ~w0 ¼ 1�-
and ~w1�4 ¼ -=4, and csT ¼ ffiffiffiffiffiffiffiffiffiffi

-=2
p

is the sound speed of the D2Q5
model. From Eq. (14), we can find that the model parameter -
should satisfy - < r and - < /

The relaxation matrices H and Q are given by

H ¼ diagðf0; fa; fa; fe; feÞ;Q ¼ diagðg0;gD;gD;ge;geÞ: ð15Þ
respectively. The effective thermal diffusivity ae and effective mass
diffusivity De are defined as

ae ¼ c2sT
1
fa

� 1
2
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1
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� 1
2
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respectively.
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