
Please cite this article in press as: W.J.M. Ridgway, A.F. Cheviakov, An iterative procedure for finding locally and globally optimal arrangements of particles on the unit
sphere, Computer Physics Communications (2018), https://doi.org/10.1016/j.cpc.2018.03.029.

Computer Physics Communications ( ) –

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

An iterative procedure for finding locally and globally optimal
arrangements of particles on the unit sphere✩

Wesley J.M. Ridgway *, Alexei F. Cheviakov
Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, S7N 5E6, Canada

a r t i c l e i n f o

Article history:
Received 19 July 2017
Received in revised form 15 March 2018
Accepted 31 March 2018
Available online xxxx

Keywords:
Local/global optimization
Optimal configuration
Pairwise energy
Narrow escape
Narrow capture
Coulomb energy
Steepest descent
Packing problem

a b s t r a c t

The problem of determination of globally optimal arrangements of N pairwise-interacting particles arises
in a variety of biological, physical, and chemical applications. At the same time, the important related
question of finding all, or many, local minima of the corresponding energy functions, and the study of
structure of these minima, has received relatively little attention.

A computational procedure is proposed to compute locally optimal and putative globally optimal
arrangements of N particles constrained to a sphere. The procedure is able to handle a wide class of
pairwise potentials, and can be generalized to other kinds of surfaces and interactions.

As computational examples, locally and globally energy-minimizing arrangements of particles on the
unit sphere, interacting via the Coulombic, logarithmic, and inverse square law potentials, are computed.
We present new results for the logarithmic potential consisting of 45 new local minima for N ≤ 65 and
two new global minima (N = 19, 46), as well as results for the inverse square law potential which has
not previously been studied. We provide comprehensive tables of all minima found, and exclude saddle
points. The algorithm can perform computations exceeding N = 100 with reasonable execution times.
Program summary

Program Title: EOPS 1.0 - Energy Optimizer for Particles on the Sphere
Program Files doi: http://dx.doi.org/10.17632/cbn8jt2ffw.1
Licensing provisions: GPLv3
Programming language:MATLAB 2015b, C++98, Maple
Nature of problem: Computation of locally and globally optimal arrangements of N particles on the

sphere for different pairwise potentials. This constitutes a constrained local optimization problem with
2N − 3 degrees of freedom.

Solution method: For N particles, the pairwise potential energy is minimized via steepest descent
trajectory from a starting configuration generated from known putative (N − 1)-particle optimal con-
figurations.

Restrictions: Spherical domain in R3 and pairwise potentials. The number of particles is limited by the
computing power and memory of the machine.

Unusual features: The programs are executed from MATLAB scripts which call C++ and Maple proce-
dures which perform the bulk of the computations.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The general problem of finding optimal arrangements of particles on the boundary of a domain in Rn dates back over 100 years to
the Thomson problem, which concerns finding the arrangement of N identically charged particles on the surface of a sphere in R3 that
minimizes the Coulombic energy. This problem arose in J.J. Thomson’s early ‘‘plum pudding’’ model of the atom in which the electrons
are point charges that are suspended in a ‘‘jellium’’ of positive charge. Similar problems now arise in molecular biophysics and material
science.

✩ This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect (http://www.sciencedirect.com/
science/journal/00104655).
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An optimal configuration is defined as follows. Given a domain D in Rn, n ≥ 2, an arrangement of N identical particles is said to be an
optimal configuration when the set of particle coordinates {xi}Ni=1 minimizes the pairwise potential,

H(x1, ..., xN ) =

N∑
i<j

h(|xi − xj|), (1.1)

under the constraint xi ∈ ∂D where h is a pairwise energy associated with a single pair of particles. One obtains the Thomson problem
when h is the Coulombic potential

h(d) =
1
d
. (1.2)

Finding optimal configurations constitutes a constrained local optimization problem in which the objective function is given by (1.1).
The problem of distributing points on the boundary of a domain has applications in the narrow escape problem in biophysics. In this

problem, a Brownian particle diffuses inside of a bounded domain with a reflecting boundary except for N small absorbing ‘‘traps’’, or
windows. The problem consists in finding the mean first passage time (MFPT) of Brownian particles through the traps. Narrow escape
problems can be used to model the motion of Brownian particles (proteins, ions, etc.) which must exit a confining domain in order to
accomplish a biological function. Some examples include chemical reactions in microdomains (such as synapses and microvesicles) [1],
the time required for diffusive particles inside a biological cell to react with proteins on the cell membrane [2], the dynamics of receptors
undergoing Brownian motion on the cell membrane [3], and virus transport inside the cell nucleus [4]. A specific example of a narrow
escape problem for the sphere is a model of a biological microstructure known as a dendritic spine (see [1] and references therein). These
structures are found in neurons as the postsynaptic part of a synapse and consist of a head at the end of a long neck. The mean time for a
calcium ion undergoing Brownian motion to escape the spine head (i.e. the MFPT) is an important quantity related to synaptic plasticity.

Multi-term asymptotic expressions for the MFPT have recently been obtained for various domains using the method of matched
asymptotic expansions [5–7]. In the case where the domain is a sphere inR3 with N small absorbing spherical caps on the boundary, it has
been shown [5,8] that finding arrangements of traps that minimize the average MFPT requires minimization of an energy-like function
given by (1.1) over the surface of the sphere where

h(d) =
1
d

−
1
2
log d −

1
2
log(2 + d). (1.3)

A related problem, known as the narrow capture problem, involves finding the MFPT for a Brownian particle diffusing inside a domain
with a reflecting boundary but small absorbing interior targets. This problem also has applications in molecular biophysics (see [9] and
references therein). The case of a general domain with a single interior target consisting of absorbing spherical caps on an otherwise
reflecting boundary has been studied recently [10,11]. In particular, it was shown that when the target is spherical with N absorbing
circular pores, the MFPT is minimized when the target is at the center and the arrangement of pores minimizes a pairwise energy-like
function in which the pairwise energy is similar to (1.3)

h(d) =
1
d

+
1
2
log

(
d

2 + d

)
. (1.4)

Computation of optimal configurations also relates to packing problems. The best-packing problem for the sphere consists of finding
the most efficient way of packing circles (spherical caps) onto the surface of a sphere, or equivalently maximizing the smallest radius of N
circles on the sphere. This problem is also referred to as the Tammes problem after the Dutch botanist who studied the arrangement of exit
places on grains of pollen [12]. Recently this problem has been solved exactly for N = 13, 14 [13], and exact solutions are now known for
all N up to 14. The arrangements of spherical caps minimize an extremely short-range energy function (see [14] and references therein)
which is given by the limiting case

h(d) =
1
dm

, m → ∞. (1.5)

In the low-temperature limit, the geometry of a crystallinematerial is determined by the lowest energy configuration or ‘‘ground-state’’
of the system. The ground state configurations for planar crystals contain nodefects in their structure, however, in general this is impossible
for non-planar crystals due to the Euler theorem of topology. The geometry and arrangements of defects in such materials play a role in
determining their electrical and mechanical properties. As a well-known example of a crystal with non-planar geometry, consider carbon
nanotubes (CNTs). The chirality of a CNT determines whether it is eclectically conducting, insulating, or semiconducting.

Spherical structures occur frequently in material science, notably the class of carbon fullerene molecules discovered in 1985 [15].
Spherical structures also occur in colloidosomes which are shells consisting of colloidal particles surrounding a liquid center. The
arrangements of charged colloids correspond to solutions of the Thomson problem[16]. The Thomson problem also serves as a reasonable
model ofmultielectron bubbles in liquid helium [16,17]. These bubbles are formed above the liquid surfacewhen an electrode is submerged
in the liquid and the electric field strength is increased beyond a critical value. This causes electrons that are initially outside the surface to
enter the liquid via formation of multielectron bubbles. The bubbles contain approximately 105 to 108 electrons spread across the surface
and the bubble radius is between 10 µm and 100 µm. The inter-electron spacing is usually at least 0.2 µm and therefore the electrons
can be considered classical particles distributed such that the Coulomb energy is minimized [17–19]. Furthermore, it has been shown that
a spherical bubble is energetically stable against perturbations under an appropriately pressure [20]. Thus multielectron bubbles indeed
closely resemble Thomson’s original problem albeit in a different context.

The Thomson problem today remains interesting both as a mathematical problem but also as a benchmark for testing optimization
software. A comprehensive list of putative globally energy-minimizing designs has been produced for all N up to 132 and some selected N
up to 282 [21]. Localminima are not aswell known, althoughmany putative localminima have been discovered up toN = 112 [22] and up
to N = 150 for a few selected N [23]. Putative global minima for particles interacting via the logarithmic potential have also been studied



Download English Version:

https://daneshyari.com/en/article/8947435

Download Persian Version:

https://daneshyari.com/article/8947435

Daneshyari.com

https://daneshyari.com/en/article/8947435
https://daneshyari.com/article/8947435
https://daneshyari.com

