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a b s t r a c t

The causal set approach to quantum gravity has gained traction over the past three decades, but
numerical experiments involving causal sets have been limited to relatively small scales. The software
suite presented here provides a new framework for the generation and study of causal sets. Its efficiency
surpasses previous implementations by several orders of magnitude. We highlight several important
features of the code, including the compact data structures, the O(N2) causal set generation process, and
several implementations of the O(N3) algorithm to compute the Benincasa–Dowker action of compact
regions of spacetime. We show that by tailoring the data structures and algorithms to take advantage of
low-level CPU and GPU architecture designs, we are able to increase the efficiency and reduce the amount
of required memory significantly. The presented algorithms and their implementations rely on methods
that use CUDA, OpenMP, x86 Assembly, SSE/AVX, Pthreads, and MPI. We also analyze the scaling of the
algorithms’ running times with respect to the problem size and available resources, with suggestions on
how to modify the code for future hardware architectures.
Program summary
Program Title: Causal Set Generator and Action Computer
Program Files doi: http://dx.doi.org/10.17632/5k8wjrhgwh.1
Licensing Provisions:MIT
Programming Language: C++/CUDA, x86 Assembly
Nature of Problem: Generate causal sets and compute the Benincasa–Dowker action.
Solution Method: We generate causal sets sprinkled on a Lorentzian manifold by randomly sampling
element coordinates using OpenMP and linking elements using CUDA. Causal sets are stored in aminimal
binary representation via the FastBitset class. We measure the action in parallel using OpenMP,
SSE/AVX and x86 Assembly. When multiple computers are available, MPI and POSIX threads are also
incorporated.
Additional Comments: The program runs most efficiently with an Intel processor supporting AVX2 and an
NVIDIA GPU with compute capability greater than or equal to 3.0.
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1. Introduction

There exists a multitude of viable approaches to quantum
gravity, among which causal set theory is perhaps the most min-
imalistic in terms of baseline assumptions. It is based on the hy-
pothesis that spacetime at the Planck scale is composed of discrete
‘‘spacetime atoms’’ related by causality [1]. These ‘‘atoms’’,
hereafter called elements, possess a partial order which encodes

✩ This paper and its associated computer program are available via the Computer
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all information about the causal structure of spacetime, while
the number of these elements is proportional to the spacetime
volume—‘‘Order + Number = Geometry’’ [2]. One of the first suc-
cesses of the theorywas the prediction of the order ofmagnitude of
the cosmological constant long before experimental evidence [3],
while one of the most recent significant advances was the def-
inition of a statistical partition function for the canonical causal
set ensemble Ω [4] based on the Benincasa–Dowker action [5].
This work, which examined the space of 2D orders Ω2D ⊆ Ω
defined in [6], provided a framework to study phase transitions and
measure observables, with paths towards developing a dynamical
theory of causal sets from which Einstein’s equations could possi-
bly emerge in the continuum limit. Yet the progress along this path
is partly blocked on numerical limitations. Since the theory is non-
local, the combination of action computation running times,O(N3),
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and thermalization times, O(N2), of Monte Carlo methods used
to sample causal sets from the ensemble, result in O(N5) overall
running times, limiting numerical experimentation to causal set
sizes N of just tens of elements.

Here we present new fast algorithms to generate causal
sets sprinkled onto a Lorentzian manifold and to compute the
Benincasa–Dowker action, with an emphasis on how these algo-
rithms are optimized by leveraging the computer’s architecture
and instruction pipelines. After providing a short background on
causal sets and the Benincasa–Dowker action in Sections 1.1 and
1.2, we describe several algorithm implementations to generate
causal sets in Section 2. Section 3 presents a highly optimized data
structure to represent causal sets that speeds up the computation
of the action, Section 4, by orders of magnitude. Section 5 presents
an analysis of algorithms’ running times as functions of the causal
set size and available computational resources. We conclude with
a summary in Section 6.

1.1. Causal sets

Causal sets, or locally-finite partially ordered sets, are the cen-
tral object in the causal set approach to quantum gravity [1,7,8].
These structures are modeled as directed acyclic graphs (DAGs)
with N labeled elements (n1, n2, . . . , nN ) and directed pairwise re-
lations (ni, nj). If obtained by sprinkling onto a Lorentzianmanifold,
they approximate the manifold in the continuum limit N → ∞.
Lorentzianmanifolds are (d+1)-dimensionalmanifoldswith d spa-
tial dimensions and one temporal dimensionwhosemetric tensors
gµν , µ, ν = 0, 1, . . . , d, have one negative eigenvalue [9,10]. These
DAGs are a particular type of random geometric graph [11]: ele-
ments are assigned coordinates in time and d-dimensional space
via a Poisson point process with intensity ξ , and they are linked
pairwise if they are causally related, i.e., timelike separated in the
spacetime with respect to the underlying metric (Fig. 1). As a side
note, sprinkling onto a given Lorentzian manifold is definitely not
the onlyway to generate randomcausal sets. The general definition
of a causal set can be found in [1], and random causal sets also
can be obtained by sampling from the canonical ensemble Ω [4],
or more generally, from the ensemble of random partial orders
Pn,p [12], i.e., they can in general be treated as unlabeled partial
orders. Due to the non-locality implied by the causal structure,
causal sets have an information content which scales at least as
O(N2) compared to that in competing theories of discrete space-
time which scales as O(N) [13–15]. As a result, by using the causal
structure information contained in these DAG ensembles, one can
recover the spacetime dimension [16,17], continuum geodesic dis-
tance [18], differential structure [19–22], Ricci curvature [5], and
the Einstein–Hilbert action [13,23–25], among other properties.

1.2. The Benincasa–Dowker action

In many areas of physics, the action (S) plays the most fun-
damental role: using the least action principle [26,27], one can
recover the dynamic laws of the theory as the Euler–Lagrange
equations that represent the necessary condition for action ex-
tremization δS = 0. In general relativity, from the Einstein–Hilbert
(EH) action,

SEH =
1
2

∫
R (xµ)

√
−g dxµ , (1)

where R is the Ricci scalar curvature and g is the metric tensor
determinant, Einstein’s field equations can be explicitly derived
and then solved given a particular set of constraints [28]. Therefore,
if one hopes to develop a dynamical theory of quantum gravity,
one would hope that either the discrete action in the quantum
theory converges to (1) in the large-N limit, as we find with the

Fig. 1. The causal set as a random geometric graph. Elements of the causal
set are sprinkled uniformly at random with intensity ξ into a particular region of
spacetime, where η and θ respectively refer to the temporal and spatial coordinates
in (1 + 1) dimensions. Light cones, drawn by 45-degree lines in these conformal
coordinates, bound the causal future and past of each element. When light cones
of a pair of elements (shown in blue and green) overlap, the elements are said to
be causally related, or timelike separated, as indicated by the bold red line. The
black elements both to the future of the signal and to the past of the observer form
the pair’s Alexandroff set shown by the teal color. Not all pairwise relations are
drawn. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Regge action for gravitation [29], or an interacting theory leads to
an effective action, as we see with the Wilson action in quantum
chromodynamics [30]. The numerical investigation of whether
such a transition does indeed take place can be quite difficult: the
quantumgravity scale is the Planck scale, so that if the convergence
is slow, it may be extremely challenging to observe it numerically.
This is indeed the case for the causal set discrete action, known
as the Benincasa–Dowker (BD) action [5], which has been shown
to converge slowly to the EH action in curved higher-dimensional
spacetimes such as (3+1)-dimensional de Sitter spacetime [22,24].

The BD action was discovered in the study of the discrete
d’Alembertian (B), i.e., the discrete covariant second-derivative
approximating □ ≡ −∂2

t + ∇
2, defined in (1 + 1) dimensions, for

instance, as

Bφ (xµ) =
2
l2

(
− φ (xµ)+ 2

⎡⎣∑
y∈L1

−2
∑
y∈L2

+

∑
y∈L3

⎤⎦φ (yµ)

)
, (2)

where φ(xµ) is a scalar field on the causal set, l ≡ ξ−1/(d+1) is
the discreteness scale, and the ith order inclusive order interval
(IOI) Li corresponds to the set of elements {y} which precede x
with exactly (i − 1) elements {zj} within each open Alexandroff
set, i.e., y ≺ {zj} ≺ x∀ y ∈ Li and |{zj}| = i − 1. In [5] it was
shown that in the continuum limit, (2) converges in expectation
to the continuum d’Alembertian plus another term proportional to
the Ricci scalar curvature

lim
N→∞

E [Bφ (xµ)] = □φ (xµ)−
1
2
R (xµ) φ (xµ) . (3)

From (2) and (3) one can seewhen the field is constant everywhere,
so that □φ(xµ) = 0, then (2) converges to the Ricci curvature in
the continuum limit, and therefore to the EH actionwhen summed
over the entire causal set. It was also shown in [5] that the expres-
sion for the BD action in (1+ 1) dimensions is

SBD = 2(N − 2n1 + 4n2 − 2n3) , (4)

where ni is the abundance of the ith order IOI, i.e., the cardinality
of the set Li (Fig. 2). While (4) converges in expectation, any typical
causal set tends to have a BD action far from themean. This poses a
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