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A B S T R A C T

A model for deep bed filtration of a monodisperse suspension in a porous medium with multiple geometric
particle capture mechanisms is considered. It is assumed that identical suspended particles can block pores of
different sizes. The pores smaller than the particle size are clogged by single particles; if the pore size exceeds
the diameter of the particles, it can be blocked by bridging — several particles forming various stable structures.

An exact solution is obtained for constant filtration coefficients. Exact solutions for non-constant filtration
functions are obtained on the concentrations front of the suspended and retained particles and at the porous
medium inlet. Asymptotic solutions are constructed near these lines. For small and close to constant filtration
functions, global asymptotic solutions are obtained.

A basic model with two mechanisms of particle capture is studied in detail. Asymptotic solutions are compared
to the results of numerical simulation. The applicability of various types of asymptotics is analyzed.

1. Introduction

Understanding the processes of transport and deposition of solid par-
ticles of suspensions and colloids in porous media is vital for the control
of many engineering systems and in the study of natural structures. Deep
bed filtration plays an important role in the contamination of groundwa-
ter and in the formation damage during oil production. Filtration makes
possible separation of solid particles from a liquid mixture in chemical
and biochemical industries, purification of drinking water, industrial
waste disposal, groundwater remediation, decontamination of aquifers
from viruses and bacteria [1–7].

A one-dimensional filtration problem for a monodisperse suspen-
sion in a homogeneous porous medium is considered. The fluid flow
transports solid particles through pores. Some particles are retained on
the porous medium frame and form a deposit. If the particle diameter
exceeds the pore size, the deposit at the inlet of the porous medium
forms a filter cake. Usually a porous medium contains pores of various
sizes, from pores smaller than the particle diameter up to large pores
whose sizes are several times larger than the particles. The particles
penetrate deep into the porous medium and get stuck over the entire
length of its frame. This process is called deep bed filtration [8–11]. To
study the filtration of suspensions and colloids in a porous medium,
various models are used that take into account the different causes
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of particle transport and retention [12–15]. In many cases the main
mechanism for particles retention is size-exclusion: single particles pass
freely through large pores and get stuck at the inlets of small pores
(Fig. 1a, b). The filtration model for a monodisperse suspension with
size-exclusion was studied in [16–18].

A one-dimensional model for the filtration of a monodisperse suspen-
sion in a porous medium includes the equation for the mass balance of
suspended and retained particles and the kinetic equation for the growth
of the retained particles concentration. In the domain

𝛺 = {(𝑥, 𝑡) ∶ 0 < 𝑥 < 1, 𝑡 > 0}

the standard macroscopic dimensionless equations have the form

𝜕𝐶
𝜕𝑡

+ 𝜕𝐶
𝜕𝑥

+ 𝜕𝑆
𝜕𝑡

= 0; (1)

𝜕𝑆
𝜕𝑡

= 𝛬(𝑆)𝐶; (2)

where 𝐶(𝑥, 𝑡); 𝑆(𝑥, 𝑡) are the volumetric concentrations of suspended and
retained particles.

The boundary and initial conditions for the system (1), (2) are

𝐶|𝑥=0 = 1; (3)
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Fig. 1. Particle transport and pore blocking by separate particles and stable particle bridges.

𝐶|𝑡=0 = 0; 𝑆|𝑡=0 = 0. (4)

For the problem (1)–(4) the exact analytical solution can be obtained
for any form of the filtration function 𝛬(𝑆) [19].

The filtration function 𝛬(𝑆) which depends on the pore geometry and
on the particle and rock properties is determined experimentally [20].
For low retention concentration, 𝛬(𝑆) is constant and is called the
filtration coefficient; it can be determined using either the breakthrough
concentration or the pressure drop growth during the clean-bed sus-
pension injection [1,21]. In the case of size-exclusion (blocking of
pores of the small size by the single particles) the filtration function
is proportional to the concentration vacancies and is called the blocking
(Langmuir) function

𝛬 (𝑆) = 𝜆
(

1 − 𝑆
𝑆max

)

.

In the general case the filtration function 𝛬(𝑆) is non-linear; it can be
determined from the time of the breakthrough concentration. The corre-
sponding inverse problem is ill-posed and requires regularization [22].
Yet, the problem of determination of the filtration function using the
retention profile is a well-posed inverse problem [23]. However, the
breakthrough concentration depending on time is measured by particle
counting and is readily available from laboratory core floods [24,25].
On the contrary, the retention profile is determined by complex and
cumbersome CT technique [26,27]. A detailed description of laboratory
core floods of suspensions and colloids can be found in [28].

Usually, the existence of an analytical solution of the direct problem
significantly simplifies the solution of the inverse problem [1,29].

The retention rate given by Eq. (2) is proportional to the suspended
particles concentration 𝐶 only for low suspension concentrations; for
large concentrations, it is proportional to 𝑓 (𝐶) which is called the
suspension function.

Experiments show that pores larger than the particle diameter can
be clogged by several particles. Near the pore inlet at a sufficiently high
velocity of the carrier fluid, the hydrodynamic characteristics of the flow
change, and the forces of the suspended particles attraction begin to
exceed the forces of mutual repulsion. As a result, complex multi-particle
structures are formed directly in the fluid and approach the pores as
single units. At the pore inlet, such a structure either collapses and falls
into the pore or docks to the pore inlet and blocks it (Fig. 1c, d). This
phenomenon is called bridging [30,31].

In the above works, only one of the possible mechanisms of pore
blocking is considered: either bridging or size-exclusion. In [32], a
model of deep bed filtration with several particle capture mechanisms is
presented. However, it only considers the capture of individual particles,
rather than the formation of arched bridges of several particles. For
several equations of the form (2) with different filtration functions,
the retention rate is proportional to the concentration of suspended
particles. Nevertheless, the multi-particle bridging is one of the most
significant capture mechanisms [1]. Detailed results of experiments with
size-exclusion and bridging acting simultaneously are given in [33].
No analytical models for multi-particle bridging are available in the
literature.

The present paper fills the gap. We consider a filtration model in
which several particle capture mechanisms operate simultaneously with

arched bridges of different configurations. It is assumed that the bridge
configuration for pore blocking is determined by the ratio of the particle
and pore sizes. Pores with sizes smaller than the particle size are clogged
by single particles. If the pore size exceeds the particle size it can be
blocked by several particles which form a stable structure of an arched
bridge at the pore inlet. Suppose that there are several different types
of stable arched bridges that can be formed at the inlets of pores whose
sizes exceed the suspended particle size (for example, Fig. 1c, d); the
bridge that blocks the pore cannot be destroyed by the fluid flow or by
the other particles.

The structure of the text is as follows. In Section 2, a mathematical
model for the filtration with several particle capture mechanisms is
developed and the main properties of the solution are studied. The
exact solutions to the problem are obtained in Section 3. In Sections 4
and 5 local and global asymptotic solutions are constructed. The results
of numerical simulation for the basic model with two particle capture
mechanisms are given in Section 6. Discussion and Conclusions in
Sections 7, 8 complete the paper.

2. A mathematical model and the main properties of the solution

In the proposed model, the kinetic equation of deposit growth in
pores of a certain size depends on the type of the arched bridge. Assume
that during the filtration 𝑛 stable bridges consisting of 𝑘1, 𝑘2,… , 𝑘𝑛
particles can be formed blocking pores of various sizes, and one large
pore can be clogged by a bridge of only one specific configuration
with a given number of particles. In this case the rate of deposit
bridge growth 𝜕𝑆𝑖∕𝜕𝑡 is proportional to the bridging function 𝐹𝑖(𝐶)
that depends nonlinearly on the suspended particles concentration. The
filtration function 𝛬𝑖(𝑆𝑖) depends on the deposit bridge concentration
𝑆𝑖.

In the modified filtration model the equation of mass balance
includes the total deposit 𝑆 which usually is equal to the sum of the
partial deposits 𝑆𝑖. Consider a more general case in which the total
deposit is a linear combination of partial deposits.

In the domain 𝛺 the model of the one-dimensional filtration problem
with various geometric mechanisms of particle capture is determined by
the equations

𝜕𝐶
𝜕𝑡

+ 𝜕𝐶
𝜕𝑥

+ 𝜕𝑆
𝜕𝑡

= 0; (5)

𝜕𝑆𝑖
𝜕𝑡

= 𝛬𝑖(𝑆𝑖)𝐹𝑖(𝐶), 𝑖 = 1, 2,… , 𝑛; (6)

𝑆 = 𝛼1𝑆1 + 𝛼2𝑆2 +⋯ + 𝛼𝑛𝑆𝑛; (7)

where 𝐶(𝑥, 𝑡); 𝑆𝑖(𝑥, 𝑡) are the concentrations of suspended particles and
of partial bridging deposits, 𝛼1, 𝛼2,… , 𝛼𝑛 — positive constants.

Note that size-exclusion clogging of small pores by single particles is
one of the particle capture mechanisms. To include this mechanism into
the model one should assume that 𝑘1 = 1; 𝐹1(𝐶) = 𝐶.

Assume that a suspension with suspended particles of constant
concentration is injected at the porous medium inlet:

𝐶|𝑥=0 = 1; (8)
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