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A B S T R A C T

Sea lice are marine parasites affecting salmon farms, and are considered one of the most costly pests of the
salmon aquaculture industry. Infestations of sea lice on farms significantly increase opportunities for the parasite
to spread in the surrounding ecosystem, making control of this pest a challenging issue for salmon producers.
The complexity of controlling sea lice on salmon farms requires frequent monitoring of the abundance of dif-
ferent sea lice stages over time. Industry-based data sets of counts of lice are amenable to multivariate time-series
data analyses.

In this study, two sets of multivariate autoregressive state-space models were applied to Chilean sea lice data
from six Atlantic salmon production cycles on five isolated farms (at least 20 km seaway distance away from
other known active farms), to evaluate the utility of these models for predicting sea lice abundance over time on
farms. The models were constructed with different parameter configurations, and the analysis demonstrated
large heterogeneity between production cycles for the autoregressive parameter, the effects of chemother-
apeutant bath treatments, and the process-error variance. A model allowing for different parameters across
production cycles had the best fit and the smallest overall prediction errors. However, pooling information
across cycles for the drift and observation error parameters did not substantially affect model performance, thus
reducing the number of necessary parameters in the model. Bath treatments had strong but variable effects for
reducing sea lice burdens, and these effects were stronger for adult lice than juvenile lice. Our multivariate state-
space models were able to handle different sea lice stages and provide predictions for sea lice abundance with
reasonable accuracy up to five weeks out.

1. Introduction

A major threat to salmonid aquaculture in Chile, and worldwide, is
infestation with sea lice. Sea lice (Caligus rogercresseyi or Lepeophtheirus
salmois) cause stress, reduced growth, and may lead to increased mor-
tality when fish are heavily infested (Adams et al., 2012). There are also
important production costs associated with the presence and control of
sea lice (Costello, 2009;González et al., 2012; Liu and Bjelland, 2014).

Infestations on farms may elevate the number of lice in surrounding
waters, above what would occur naturally, increasing opportunities for
sea lice to spread. Farms with heavy burdens of sea lice may infest
neighboring farms (Krkošek et al., 2011; Jansen et al., 2012;
Kristoffersen et al., 2013) and may also spread lice to wild salmonid
populations (Krkošek et al., 2007; Rogers et al., 2013).

Infestation with sea lice on farms occurs from both internal and
external farm sources (Aldrin et al., 2013; Kristoffersen et al., 2013); for
example, in Norway it has been estimated that approximately 66% of

infestations are internally transmitted, 28% come from neighboring
farms, and the remaining 6% come from other sources (Aldrin et al.,
2013). Controlling sources of infestation is critical in the prevention of
the parasite since Atlantic salmon (Salmo salar) and rainbow trout
(Oncorhynchus mykiss) do not develop immunity to this parasite (Jones
and Beamish, 2011).

Chemical bath treatments are the most common management
practice for reducing sea lice abundance and spread of the parasite.
However, the effectiveness of this control strategy depends on the
timing of the application, and the life stage (juvenile or adult) of the
parasite. Despite all the efforts put into controlling sea lice infestations
on farms, they continue to be problematic for the aquaculture industry.
Understanding the dynamics between sea lice populations on and
among farms, and being able to predict lice burdens from different
sources is critical to the management of this parasite, especially as the
net-pen aquaculture industries around the world continue to grow and
intensify.

https://doi.org/10.1016/j.epidem.2018.04.002
Received 14 November 2017; Received in revised form 1 April 2018; Accepted 9 April 2018

⁎ Corresponding author.
E-mail address: aelghafghuf@upei.ca (A. Elghafghuf).

Epidemics xxx (xxxx) xxx–xxx

1755-4365/ © 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/).

Please cite this article as: Elghafghuf, A., Epidemics (2018), https://doi.org/10.1016/j.epidem.2018.04.002

http://www.sciencedirect.com/science/journal/17554365
https://www.elsevier.com/locate/epidemics
https://doi.org/10.1016/j.epidem.2018.04.002
https://doi.org/10.1016/j.epidem.2018.04.002
mailto:aelghafghuf@upei.ca
https://doi.org/10.1016/j.epidem.2018.04.002


The parasite’s complex life cycle, results in different age structures
of sea lice on individual fish (González and Carvajal, 2003; Bravo,
2010). In Chile, the different juvenile life stages are aggregated into one
juvenile stage for reporting purposes, which is differentiated from the
mobile adult male and non-gravid female lice stages. These life stages
subdivide the sea lice populations into correlated subpopulations, re-
sulting in complex population structures. The subpopulations have
different characteristics and managerial factors may affect juvenile and
adult lice differently. Also, fluctuations in seawater temperature and
salinity that influence the growth of sea lice may vary over time and
between geographic regions where salmon farms are located. All these
factors need to be taken into consideration when modeling sea lice
abundance on farms.

Many prior research studies have been undertaken to better un-
derstand the transmission of sea lice within and between farms in
Norway and Chile. To this end, a variety of analytic approaches for
estimating and predicting transmission patterns of the parasite have
been published. Jansen et al. (2012) applied a two-component mixture
model with negative binomial and Bernoulli response variables to as-
sess the farm-to-farm infestation pressure for Lepeophtheirus salmois in
the Norwegian aquaculture industry. A space-time modeling approach
was used by Aldrin et al. (2013) for analyzing the spread of sea lice
within and between salmon farms in Norway, using a zero-inflated
negative-binomial response variable. Recently, Aldrin et al. (2017)
formulated the life stages of sea lice in a stage-structured hierarchical
model and used Markov Chain Monte Carlo (MCMC) for parameter
estimation. In Canada, Rittenhouse et al. (2016) applied a delay dif-
ferential equation model to sea lice data from British Columbia and
southern Newfoundland; their deterministic model incorporated tem-
perature and salinity as seasonally varying factors. In Chile,
Kristoffersen et al. (2013) analyzed juvenile C. rogercresseyi using a two-
part random effects model; they modeled the odds of the non-zero mean
abundance using a random-effects logistic model, and the non-zero
mean juvenile abundance by a random-effects gamma regression
model. Also, a linear mixed-effects model was used by Arriagada et al.
(2014, 2017) to model sea lice mean abundance in Chile. Even though
many statistical models have been used to describe sea lice abundance
and treatment, most have failed to consider unmeasured variable ef-
fects, measurement errors, and maybe imperfect data (e.g. due to
missing values).

State-space models have advantages over the aforementioned sta-
tistical models because they account better for multiple sources of un-
certainty, and therefore, may provide more accurate predictions than
traditional models. These types of models are intensively used in
econometrics (Tsay, 2005; Durbin and Koopman, 2012) and ecology
(Cantrell et al., 2010; Newman et al., 2014). In veterinary epide-
miology, many ecological models have been used for infectious dis-
eases, when the environment plays an important role in pathogen
spread (e.g. Escobar et al., 2015). For example, they allow modellers to
separate the variation in the observed data, due to measurement error,
from the variation due to true population fluctuations. The process
error is different than the measurement error, in that the latter does not
influence current or future outcome levels; it only affects the estimation
of the outcome.

The specific objectives of this study were threefold. The first was to
demonstrate the use of state-space models in modeling sea lice data and
explore the feasibility of multivariate time-series analysis of data from
multiple farms. The second was to gain understanding of heterogeneity
between production cycles and how to best incorporate data that
comprise multiple cycles into state-space models. The third was to si-
multaneously analyze data from isolated farms with relatively few
neighbors (and hence likely not receiving large parasite burdens from
outside their own farm), using multivariate state-space models to esti-
mate parameters related to sea lice abundance in this population. To
our knowledge, this is the first reported use of state-space models for
modeling Chilean sea lice data.

2. Materials and methods

2.1. Sea lice data

Data were extracted from the sea lice monitoring program database
of the Chilean salmon farming association (INTESAL-SalmonChile),
collected from 2009 to 2015. Details of the monitoring program and
data collection have been described elsewhere (Kristoffersen et al.,
2013; Arriagada et al., 2014; Arriagada et al., 2017). Briefly, farms of
either Atlantic salmon or rainbow trout, located in different geographic
regions of Chile, participated in the monitoring program; most of these
farms had multiple production cycles separated by fallow periods. On
each participating farm, sea lice counts were performed on a weekly
basis, on a sample of 40 fish from four pens (10 fish per pen), and
reported to INTESAL-SalmonChile. The lice counts included attached
juvenile (chalimus I to IV), and mobile adult (including gravid female)
stages.

To focus on internal farm transmission of sea lice, we restricted our
analyses to data from six Atlantic salmon production cycles from five of
the most isolated farms in the region; these farms were at least 20 km
seaway distance away from other known active farms in our database
during their production cycles. Fish in these six production cycles were
followed for their cycle duration (between 42 and 72 weeks), for a total
of 373 farm-weeks. The production cycles were temporally unrelated
and only roughly temporally aligned by the sea lice monitoring period,
which commences when salmon are stocked on marine farms. The
duration of the six time series (one per production cycle) were based on
their production cycles (i.e., started at stocking and ended at harvest).
Bath treatments (pyrethroids and azamethiphos) were applied to fish in
all production cycles except cycle 5, and in-feed treatments (emamectin
benzoate) were applied in three production cycles (cycles 1, 3, and 4;
Fig. 1). Other investigated covariates (explanatory variables) included
water temperature (mean: 11.3 °C ± 1.6), stocking density
(805,595± 215,243), and salinity (29.2 ppt ± 5.0).

2.2. Statistical modeling and analysis

2.2.1. State-space models
State-space models consist of two models to simultaneously account

for two distinct sources of variation: a state model (latent process) deals
with process uncertainty caused by unobserved factors, e.g., the fluc-
tuations of environment, and an observation model which incorporates
the effect of error caused by mismeasurement of outcomes (Durbin and
Koopman, 2012; Newman et al., 2014). For n observations of m states
( ≥n m) at each time step, the general form of a multivariate auto-
regressive state-space (MARSS) model as described in Holmes et al.
(2012) is given by

= + + +−X B X u C c Wt t t t t t t1 (1)

= + +Y Z X D d V ,t t t t t t (2)

where Eqs. (1) and (2) are the state and observation equations, re-
spectively.

This model describes the development of lice abundance (on natural
logarithmic scale) through the latent process Xt, which is an ×m 1
vector of the multiple autoregressive (of order one, AR-1) processes at
time t ; Bt is an ×m m transition matrix for the first order autoregressive
processes; ut is an ×m 1 vector of growth rates (drift); ct is an ×p 1
vector of inputs (state covariates); is an ×m p matrix of state-covariate
effects; Wt is an ×m 1 vector of process errors. Furthermore, Yt is an

×n 1 vector based on the process Xt and represents the observed lice
abundances (on natural logarithmic scale) at time t ; Zt is an ×n m
matrix to connect observed time series with corresponding processes; dt
is an ×q 1 vector of inputs (observation-model covariates); Dt is an

×n q matrix of observation-model covariate effects; Vt is an ×n 1
vector of measurement errors. The process error Wt and observation
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