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a b s t r a c t 

This paper focuses on the parameter pattern during the initialization of Extreme Learning Machines 

(ELMs). According to the algorithm, model performance is highly dependent on the matrix rank of its 

hidden layer. Previous research has already proved that the sigmoid activation function can transform 

input data to a full rank hidden matrix with probability 1, which secures the stability of ELM solution. 

In recent study, we notice that, under full-rank condition, the hidden matrix possibly has very small 

eigenvalue, which seriously affects the model generalization ability. Our study indicates such a negative 

impact is caused by the discontinuity of generalized inverse at the boundary of full and waning rank. 

Experiments show that each phase of ELM modeling possibly leads to this rank deficient phenomenon, 

which harms the test accuracy. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Introduced by Huang et al. [1,2] , the Extreme learning machines 

(ELMs) as a type of single hidden layer feed-forward neural net- 

work (SLFNs) with non-iterative algorithm, the training process 

contains two parts: first, the weights and bias between input and 

hidden layers are randomly assigned; second, the weights between 

hidden and output layers are obtained by solving a system of lin- 

ear equations using generalized inverse. 

In the recent decade, ELM has been studied by many re- 

searches: deep learning techniques have been used to improve the 

ELM performance [3] . Incorporating with other algorithms, hybrid 

ELMs were proposed by Wang et al. [4,5] . And ELM has been used 

to solve different problems in multiple areas [6] , such as imbal- 

ance problem [7] , image processing [8] and time series forecasting 

[9,10] . Also, [11] demonstrated its big data performance. Comparing 

with the typical back-propagation (BP) algorithm for training feed- 

forward neural networks, the ELM’s non-iterative training mecha- 

nism gives it speed and efficiency in most of the cases [12] . Dif- 

ferent from BP algorithm where the hidden layer keep tuning in 

iteration, the hidden matrix of ELM is decided once by the weights 

between input and hidden layers. And the tuning phase of ELM is 

to solve a system of linear equations, so the structure and values 

of hidden matrix play a critical role in model performance. For ex- 

ample, [13] already proved that the sigmoid transformation lead to 
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a full-rank hidden matrix with probability 1. And the stability of 

solution depends on whether the hidden matrix has full column 

rank. By looking deep into this full rank transformation, We find 

that with wide initial range, increasing number of hidden node, 

particular pre-training method or special pattern of training data, 

the hidden layer matrix could be weakly linear correlated. That 

means, the matrix is still full-rank but can be viewed as a per- 

turbation from rank deficient matrix. And due to the discontinuity 

of generalized inverse, the coefficients between hidden and output 

layers will have large absolute value and variance which leads to 

robustness problem of ELM solutions [14] . 

In this paper, we first point out that the training of ELM is sen- 

sitive to the rank of hidden layer matrix, and give a detailed proof 

on discontinuity of generalized inverse under waning rank matrix. 

Then based on theoretical analysis, we are going to investigate the 

following questions: how and why initial range, number of hidden 

nodes, outliers in training data and unsupervised pre-training af- 

fect the model performance respectively. 

The rest of this paper is organized as follows. Section 2 gives 

a brief review on the related works. Section 3 investigates the 

relationship between rank of matrix and its generalized inverse. 

Based on the theoretical result, some examples and experiments 

on different initial methods and network structures are shown in 

Section 4 . And in Section 5 , we conclude this paper. 

2. Extreme learning machine 

ELM means a three layer feed-forward networks with single 

hidden layer in which the weights and bias between input layer 
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Fig. 1. A simple ELM structure. 

and hidden layer are randomly assigned and the weights between 

hidden layer and output layer are solved by a system of linear 

equations. A simple structure of ELM for regression problem is 

shown in Fig. 1 with n nodes in input layer, m nodes in hidden 

layer and only one node in output layer, while the classification 

problem, number of output node equals to the number of cate- 

gories. 

Given a set of samples S = { (x i , t i ) | x i ∈ R 

d , t i ∈ R 

t } n 
i =1 

, training 

process of ELM is to determine model parameters { w ij , b j , β j }. Since 

the weights w ij and bias b j are randomly selected, the training pro- 

cess is only about determining the connections β j between hidden 

layer and output layer. Let 

G n ×m 

= 

⎡ 

⎢ ⎢ ⎣ 

w 1 x 1 + b 1 · · · w m 

x 1 + b m 

w 1 x 2 + b 1 · · · w m 

x 2 + b m 

. . . 
. . . 

. . . 
w 1 x n + b 1 · · · w m 

x n + b m 

) 

⎤ 

⎥ ⎥ ⎦ 

(1) 

be the middle matrix, where w j is the jth column of the weight 

matrix W between input layer and output layer. Let g ( · ) be the 

sigmoid function and H be hidden layer matrix, then 

H n ×m 

= (g(G )) n ×m 

= (h i j ) n ×m 

(2) 

Suppose the target matrix is T = [ t 1 , t 2 , · · · , t n ] 
T , then the training 

of ELM is transferred to solve the system of linear equations H β = 

T . In general, the solution H 

− is not unique. [2,12] suggested to 

use the minimum-norm least square solution. Instead of solving 

the system of linear equations, the optimization problem change 

to: 

min 

|| β|| 
( min 

β∈ R m 
|| T − H β|| 2 ) (3) 

the solution of (3) is the Moore–Penrose pseudo-inverse of matrix 

H , represented as H 

† . 

H β = T → 

ˆ β = H 

† T (4) 

The Moore–Penrose pseudo-inverse and solution has the following 

properties: 

1. m = n, H 

† = H 

− if A is full rank. But most of cases in ELM, the 

number of hidden node is smaller than the number of observa- 

tions. 

2. m > n (kinematically insufficient manipulator), This is the case 

there are more constraining equations than there are free vari- 

ables. Hence, it is not generally possible find a solution to these 

equations. The pseudo-inverse gives solution such that H 

† T is 

closest (in a least-squared sense) to the desired solution vector 

T . 

3. m < n (kinematically redundant manipulator), then the Moore–

Penrosesolution minimizes the norm of β. In this case, there 

are generally an infinite number of solutions, and the Moore–

Penrose solution is the particular solution whose 2-norm is 

minimal. 

Now the training process of an ELM can be divided into three 

steps: 

1. Dimension increases from input S to middle matrix G . Gener- 

ally, the number of hidden nodes m is greater than number of 

input attributes d ; 

2. The sigmoid function transfers middle matrix G to hidden layer 

matrix H with rank increased; 

3. Solving a system of linear equations with full rank of coefficient 

matrix. 

Furthermore, the activation function in step 2 not only increases 

the rank of middle matrix to hidden layer matrix, but also guar- 

antee full column rank of hidden layer matrix with the following 

proposition. 

Proposition 1. Assume that V = { v 1 , v 2 , . . . , v n } , v i = 

{ v i 1 , v i 2 , . . . , v in } , i = 1 , 2 , . . . , N denotes a set of n-dimensional 

vectors, such that 1 ≤ rank ( V ) ≤ n. Then with probability 1, the sig- 

moid transformation will transfer V in to a set of vectors of full rank. 

rank (H ) = n w.p. 1 (5) 

where H = { h 1 , h 2 , . . . , h N } , h i = { h i 1 , h i 2 , . . . , h in } , h i j = 

sigmoid (v i j ) = 1 / (1 + e v i j ) , i = 1 , 2 , . . . , N, j = 1 , 2 , . . . , n . 

Remark 1. The proof of Proposition 1 can be found in [13] . In step 

2, the middle matrix G is coming from input data S via a linear 

transformation and is generally waning rank. Proposition 1 guaran- 

tees the sigmoid transformation will transfer a waning rank matrix 

G to a full rank matrix H . In the next section, we investigate the 

relationship between full rank and generalized inverse. 

3. Continuity of generalized inverse 

In this section, we will first proof the generalized inverse is 

continuous if H is a full-rank matrix. Along with Proposition 1 , 

these two properties guarantee the stability of ELM solution. Thus, 

the full-rank matrix H is insensitive to the perturbation and can 

get the more stable solution for H β = T . Then, we discuss a special 

case which the perturbation increases the rank of matrix and dis- 

continuity of generalized inverse under this circumstances. We use 

the notation δA to represent a perturbation of matrix A . 

Proposition 2. The generalized inverse A 

† is continuous if A is a full- 

rank matrix. 

Proof. Assume rank (A ) = n, then A 

T A is a n × n non-singular ma- 

trix. In fact, it is a symmetric and positive matrix and A 

† = 

(A 

T A ) −1 A 

T , then we have 

(A + δA ) T (A + δA ) = A 

T A + (A + δA ) T δA + (δA ) T A 

According to Banach theorem, we know that (A + δA ) T (A + δA ) 

is a non-singular matrix if || (A 

T A ) −1 [(A + δA ) T δA + (δA ) T A ] || < 1 . 

This inequality will holds if we take the || δA || small enough. So 

there exists a small positive η such that the inequality holds if 

|| δA || ≤η. Now, the generalized inverse matrix is 

(A + δA ) † = [(A + δA ) T (A + δA )] −1 (A + δA ) T 

Let || δA || → 0, we have 

lim 

|| δA ||→ 0 
[(A + δA ) T (A + δA )] −1 = (A 

T A ) −1 

and lim 

|| δA ||→ 0 
(A + δA ) T = A 

T 
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