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a b s t r a c t 

We tackle precedence-constrained sequencing on a single machine in order to minimize total weighted 

tardiness. Classic dynamic programming (DP) methods for this problem are limited in performance due 

to excessive memory requirements, particularly when the precedence network is not sufficiently dense. 

Over the last decades, a number of precedence theorems have been proposed, which distinguish domi- 

nant precedence constraints for a job pool that is initially without precedence relation. In this paper, we 

connect and extend the findings of the foregoing two strands of literature. We develop a framework for 

applying the precedence theorems to the precedence-constrained problem to tighten the search space, 

and we propose an exact DP algorithm that utilizes a new efficient memory management technique. Our 

procedure outperforms the state-of-the-art algorithm for instances with medium to high network density. 

We also empirically verify the computational gain of using different sets of precedence theorems. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

We consider a set N = { 1 , . . . , n } of jobs (activities) and a set 

E of precedence constraints: for any i , j ∈ N , if ( i , j ) ∈ E then job i 

should be scheduled before job j . More specifically, E is a strict 

partial order on N , i.e., it is irreflexive (pairs ( j , j ) �∈ E ), asymmet- 

ric (if ( i , j ) ∈ E then ( j , i ) �∈ E ), and transitive (if ( i , j ), ( j , k ) ∈ E then ( i , 

k ) ∈ E ). Associated with each job i ∈ N is a processing time p i ∈ N 0 , 

a due date d i ∈ N and a tardiness weight w i ∈ N 0 . All jobs are avail- 

able at time 0 to be processed on a single continuously available 

machine. The problem is to find a sequence s = (s 1 , s 2 , . . . , s n ) of 

the jobs that minimizes the total weighted tardiness 

T ( s ) = 

∑ 

i ∈ N 
w i max { 0 , C i − d i } , 

where C i = 

∑ � 
j=1 p s j is the earliest completion time of job i , and 

s � = i . We define B E 
i 

= { j ∈ N| ( j, i ) ∈ E} and A 

E 
i 

= { j ∈ N| (i, j) ∈ E} 
as the job sets that should be processed before and after i ac- 

cording to E , respectively. Using the notation of Graham, Lawler, 

Lenstra, and Rinnooy Kan (1979) , this problem is denoted by 

1 | prec | ∑ 

w j T j . The problem is strongly NP-hard ( Lawler, 1977 ). 
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Two related problems have received quite some attention in 

the scheduling literature. The single-machine scheduling problem 

to minimize total weighted tardiness, 1 || ∑ 

w j T j , has been sur- 

veyed by Abdul-Razaq, Potts, and Van Wassenhove (1990) , who de- 

scribe various dynamic programming (DP) and branch-and-bound 

(B&B) algorithms. Potts and Van Wassenhove (1985) propose a B&B 

algorithm that solves instances with up to 50 jobs to optimal- 

ity within practical time and memory limits. Tanaka, Fujikuma, 

and Araki (2009) extend the Successive Sublimation DP (SSDP) of 

Ibaraki and Nakamura (1994) and solve relatively large instances 

with up to 300 jobs. The precedence-constrained single-machine 

scheduling problem to minimize total weighted completion time, 

1 | prec | ∑ 

w j C j , has been studied by, among others, Sidney (1975) , 

Lawler (1978) , Potts (1985) , Hoogeveen and van de Velde (1995) , 

van de Velde (1995) , Margot, Queyranne, and Wang (2003) , Correa 

and Schulz (2005) , and Schulz and Uhan (2011) . Instances with up 

to 100 jobs were solved to optimality already 30 years ago ( Potts, 

1985 ). 

In contrast to the two aforementioned problems, the lit- 

erature on 1 | prec | ∑ 

w j T j , which is a generalization, is rather 

scarce. Schrage and Baker (1978) propose a DP method, the 

performance of which is very limited mainly due to mem- 

ory insufficiency. Tanaka and Sato (2013) propose an extension 

of the algorithm of Tanaka et al. (2009) for the precedence- 

constrained problem that solves instances with up to 100 jobs 

(within practical time and memory limits) when the den- 

sity of the precedence network is very low or very high. 
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Davari, Demeulemeester, Leus, and Talla Nobibon (2016) also report 

computational results for this problem, although their algorithm is 

developed for a generalized variant with release dates and dead- 

lines; their algorithm solves instances with up to 50 activities. 

2. Precedence theorems 

Below, we will distinguish the set E of technological precedence 

constraints from the set D of all dominant precedence constraints, 

where a precedence constraint ( i , j ) is dominant iff there is at least 

one optimal solution in which i precedes j . Seeing that all feasible 

solutions respect E , we have D ⊇E . In other words, D is the union 

of all optimal complete orders. A set of precedence constraints is 

called acyclic only if it is transitive and asymmetric. If there exist 

multiple optimal solutions then D is not acyclic. A selection S ⊆D is 

said to be dominant if there is at least one optimal solution that 

respects all its constraints. Consequently, acyclicity is a necessary 

but not sufficient condition for the dominance of sets of prece- 

dence constraints. Below, we describe precedence theorems and 

dominance rules to identify a dominant selection that extends E . 

2.1. Precedence theorems for E = ∅ 

The three precedence theorems that Emmons (1969) pro- 

poses, are arguably some of the most fruitful results for 1|| �T j ; 

most of the exact approaches rely on these theorems. Later on, 

Rinnooy Kan, Lageweg, and Lenstra (1975) and Rachamadugu 

(1987) have extended Emmons’ results to the weighted tardiness 

case 1 || ∑ 

w j T j . These theorems distinguish dominant precedence 

constraints for a job pool with E = ∅ . Starting from S = ∅ and us- 

ing Emmons’ theorems, one can add job pairs to S in an iterative 

fashion. Next, by solving the problem instance with precedence 

constraints S to optimality, an optimal solution to the original in- 

stance with E = ∅ can be found. In line with Emmons (1969) and 

Rinnooy Kan et al. (1975) , for any X ⊆N , we define P (X ) = 

∑ 

i ∈ X p i 
and X̄ = N \ X . Similar to B E 

i 
and A 

E 
i 
, we define B S 

i 
and A 

S 
i 

based on 

S instead of E . Given a dominant S , and i , j ∈ N , Emmons’ conditions 

are as follows: 

E1. p i ≤ p j and w i ≥ w j and d i ≤ max { d j , P (B S 
j 
) + p j } . 

E2. w i ≥ w j and d j ≥ max { d i , P ( ̄A 

S 
i 
) − p j } . 

E3. d j ≥ P ( ̄A 

S 
i 
) . 

Emmons (1969) proves that when E = ∅ , any of these con- 

ditions is sufficient to conclude ( i , j ) ∈ D . More recently, Kanet 

(2007) has generalized Emmons’ results with seven new condi- 

tions (K1 to K7). These are stated in Appendix . Emmons (1969) and 

Kanet (2007) show that combining the dominant constraints that 

are identified by these theorems iteratively does not remove all op- 

timal solutions, i.e., any thus-obtained S is dominant iff it is acyclic. 

Given a dominant S and job pair ( i , j ), we define I ( S , i , j ) as 

the indicator function of Emmons’ and Kanet’s theorems that re- 

turns 1 if ( i , j ) satisfies at least one condition, and 0 otherwise. 

Therefore, when E = ∅ , I(S, i, j) = 1 implies ( i , j ) ∈ D . We also define 

C(S) = E ∪ { (i, j) | I(S, i, j) = 1 } . When E = ∅ then C ( S ) ⊆D , but C ( S ) is 

not necessarily acyclic. Moreover, extending S iteratively can only 

improve the theorem conditions for other job pairs to be identi- 

fied as dominant. Hence, for given dominant S 1 and S 2 the follow- 

ing result is intuitive. 

Proposition 1. If S 1 ⊂ S 2 then C ( S 1 ) ⊆C ( S 2 ) . 

2.2. Extended precedence theorems for general E 

With a general set E and for any ( i , j ), the acyclicity of E ∪ {( i , 

j )} becomes a necessary condition for the dominance of ( i , j ). 

Furthermore, the precedence theorems that were discussed in 

Section 2.1 may not be applicable as is. Consider the example de- 

picted in Fig. 1 , with E = { (1 , 3) , (2 , 4) } and S = E. We investigate 

an additional precedence constraint from job 3 to job 2. Since 

I(E, 3 , 2) = 1 (based on K1, K4 and K5), we add the pair (3,2) to 

S . As depicted in Fig. 1 (c), (3,2) implies the transitive edges (1,2), 

(1,4) and (3,4). Thus, we end up with the sequence s 1 = (1 , 3 , 2 , 4) 

with T ( s 1 ) = 159 , while for the optimal sequence s ∗ = (2 , 4 , 1 , 3) , 

T ( s ∗) = 119 . The two transitive edges (1,2) and (1,4) are not dom- 

inant, and consequently remove the optimal solutions. This coun- 

terexample shows that with general E , Kanet’s and Emmons’ con- 

ditions cannot be directly invoked, i.e., I(S, i, j) = 1 is not sufficient 

to conclude ( i , j ) ∈ D . Hence, if E � = ∅ then C ( S ) is not necessarily a 

subset of D . 

Kanet (2007) uses “swap” and “insert-after” strategies to prove 

his dominance theorems. Conditions E2–3 and K4–7 are obtained 

via the insert-after strategy, while Conditions E1 and K1–3 are de- 

rived using the swap strategy. Condition K1 generalizes E1, K4 and 

K5 generalize E2, K7 is the same as E3, and K2, K3 and K6 are en- 

tirely new in the sense that they can lead to the conclusion that a 

pair ( i , j ) ∈ D even when w i < w j . 

An illustration of the swap and insert-after strategies for gen- 

eral E and a given dominant S is provided in Fig. 2 , where βi = 

(M ∩ B E 
i 
) , α j = (M ∩ A 

E 
j 
) and γi j = M \ (α j ∪ βi ) . The symbol M rep- 

resents the set of intermediate jobs between i and j . “From” rep- 

resents any sequence that respects S , and “To” is the resulting se- 

quence after swapping j and i or inserting j after i . The latter se- 

quence respects E but not necessarily S , i.e., a number of dominant 

precedence constraints in S �E might be violated. A sufficient con- 

dition for the dominance of ( i , j ) has the structure 

LB ( TI (i )) ≥ UB ( TD ( j)) + UB ( TD (γi j )) + UB ( TD (α j )) , (1) 

where LB( · ) and UB( · ) are lower and upper bound functions, re- 

spectively, TI( i ) is the tardiness improvement of job i , and TD( i ) the 

tardiness degradation. Note that TD (βi ) = 0 . 

If an activity pair ( i , j ) satisfies Condition (1) for every feasible M 

and G ( N , E ∪ {( i , j )}) is acyclic, then if j precedes i in a given sched- 

ule, we can exchange the two jobs without increasing the tardiness 

function. Thus, for an acyclic set of activity pairs { (i, j) , (k, l) , . . . } 
that each satisfy Condition (1) , any optimal schedule that is not 

compatible with one or more of these pairs cannot be harmed by 

making as many interchanges as necessary to obtain an optimal 

schedule that respects all the pairs. Therefore, if the “To” sequence 

does not respect S , then by a finite number of swaps and insert- 

afters, it can be transformed into a sequence that respects S , such 

that the final sequence is at least as good as the intermediate se- 

quences. Given an instance G ( N , E ), let V ⊆D be the set of all activity 

pairs that satisfy Condition (1) . We conclude: 

Proposition 2. Any S ⊇E for which ( S �E ) ⊆V is dominant iff S is 

acyclic. 

Hence, we search for an inclusion-maximal acyclic S ⊇E such 

that ( S �E ) ⊆V . 

In Condition (1) , the completion times of jobs i and j depend on 

P ( αj ) and P ( β i ), so TI( i ) and TD( j ) depend on β i and αj . Also, TD( αj ) 

can be positive in both strategies. Finally, even if p i ≤ p j , the value 

TD( γ ij ) can still be positive in the swap strategy. We therefore ex- 

tend Emmons’ and Kanet’s theorems under the extra requirement 

that α j = βi = ∅ . 

Proposition 3. A 

E 
j 

⊆ A 

S 
i 

is a sufficient condition for α j = ∅ . 

Proof. Remember that α j = M ∩ A 

E 
j 
. The requirement that αj is 

empty means all jobs in A 

E 
j 

are scheduled after job i . Intuitively, the 

condition A 

E 
j 

⊆ A 

E 
i 

is sufficient to ensure α j = ∅ . Since the “From”
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