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Momentum-weighted interpolation (MWI) is a widely used discretisation method to 
prevent pressure–velocity decoupling in simulations of incompressible and low Mach 
number flows on meshes with a collocated variable arrangement. Despite its popularity, 
a unified and consistent formulation of the MWI is not available at present. In this work, 
a discretisation procedure is devised following an in-depth analysis of the individual terms 
of the MWI, derived from physically consistent arguments, based on which a unified 
formulation of the MWI for flows on structured and unstructured meshes is proposed, 
including extensions for discontinuous source terms in the momentum equations as well 
as discontinuous changes of density. As shown by the presented analysis and numerical 
results, the MWI enforces a low-pass filter on the pressure field, which suppresses 
oscillatory solutions. Furthermore, the numerical dissipation of kinetic energy introduced 
by the MWI is shown to converge with third order in space and is independent of the time-
step, if the MWI is derived consistently from the momentum equations. In the presence 
of source terms, the low-pass filter on the pressure field can be shaped by a careful 
choice of the interpolation coefficients to ensure the filter only acts on the driving pressure 
gradient that is associated with the fluid motion, which is shown to be vitally important 
for the accuracy of the numerical solution. To this end, a force-balanced discretisation of 
the source terms is proposed, that precisely matches the discretisation of the pressure 
gradients and preserves the force applied to the flow. Using representative test cases of 
incompressible and low Mach number flows, including flows with discontinuous source 
terms and two-phase flows with large density ratios, the newly proposed formulation of 
the MWI is favourably compared against existing formulations and is shown to significantly 
reduce, or even eliminate, solution errors, with an increased stability for flows with large 
density ratios.

© 2018 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

* Corresponding author at: Chair of Mechanical Process Engineering, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, 
Germany.

E-mail address: berend.van.wachem@gmail.com (B.G.M. van Wachem).
1 Current address: Chair of Mechanical Process Engineering, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany.

https://doi.org/10.1016/j.jcp.2018.08.030
0021-9991/© 2018 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jcp.2018.08.030
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://creativecommons.org/licenses/by/4.0/
mailto:berend.van.wachem@gmail.com
https://doi.org/10.1016/j.jcp.2018.08.030
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2018.08.030&domain=pdf


178 P. Bartholomew et al. / Journal of Computational Physics 375 (2018) 177–208

Fig. 1. One-dimensional example of an equidistant mesh, where �x is the mesh spacing.

1. Introduction

The coupling of pressure and velocity is a key difficulty of simulating incompressible flows and has been a central topic of 
computational fluid dynamics (CFD) for the past decades [1–3]. The difficulties associate with the pressure–velocity coupling 
can be illustrated by assuming an isothermal, incompressible flow, which is governed by the momentum equations
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and the continuity equation
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where ρ is the density, u the velocity, p is the pressure, τ is the shear stress tensor, S are the source terms, t is time 
and x is the coordinate axis. Aside from the question of how to solve the strongly coupled pressure and velocity fields, 
the governing equations of a three-dimensional incompressible flow only provide three independent equations for four 
unknowns (three velocity components plus pressure), which makes the formulation of an equation for pressure based on 
the governing flow equations non-trivial and has lead to a variety of segregated [1,3,4] and coupled [5–7] algorithms. 
Furthermore, discretising the pressure gradient on the one-dimensional equidistant mesh shown in Fig. 1 using central 
differencing yields
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where �x is the mesh spacing. The pressure gradient at node P is, crucially, not dependent on the pressure value at 
node P , irrespective of the algorithm applied to solve the governing equations. Consequently, the governing equations permit 
two independent pressure fields in a chequerboard pattern [3,4] as a valid solution to the discrete equations, a result that 
naturally extends to higher dimensions.

Pressure–velocity decoupling is a discretisation issue typically associated with incompressible flows. When compressible 
flows are considered, most numerical frameworks use density as a primary variable, while pressure is determined indi-
rectly via an appropriate equation of state. Although such density-based algorithms are the method of choice when the 
compressibility of the flow is appreciable, they are ill-suited for flows with low Mach numbers [2,8], in particular in the 
incompressible limit. Motivated by the desire to compute flows at all speeds with the same numerical framework, a number 
of pressure-based algorithms for flows at all speeds have been developed, e.g. [9–12]. However, the insignificant compress-
ibility of flows with low Mach number admits pressure–velocity decoupling in the compressible flow solution on meshes 
with collocated variable arrangement.

Historically, pressure and velocity were coupled by staggering the points at which pressure and velocity are evaluated, 
the staggered variable arrangement, as proposed by Harlow and Welch [13], with velocity typically evaluated at the centres 
of the cell-faces, while all other variables are evaluated and stored at the cell centres. A staggered variable arrangement 
enforces a natural coupling between pressure and velocity, and yields a very compact stencil for the pressure gradient that 
drives the velocity at the adjacent cell centres through the momentum equations. There is no doubt that for Cartesian 
meshes, a staggered variable arrangement is efficient and effective. However, as CFD has matured as a tool, it has found 
ever more frequent application to analyse flows in complex geometries, represented by unstructured meshes, for which 
the application of a staggered variable arrangement is difficult and may include complex corrections to account for meshes 
of relatively poor quality [14,15]. This difficulty, in conjunction with the bookkeeping overhead associated with staggered 
variable arrangements [16], has motivated the development of discretisation methods for collocated variable arrangements, 
in which all variables are stored at cell centres, that prevent the pressure–velocity decoupling ensuing as a result of the 
scenario presented in Eq. (3). Notable methods that allow robust computations on meshes with collocated variable arrange-
ment are the momentum-weighted interpolation (MWI), based on the work of several researchers in the early 1980s [17] and 
widely attributed to Rhie and Chow [18], the artificial compressibility method [19] and one-sided differencing [20], of which 
MWI is by far the most widely used at present [21].

The principle of the MWI, also frequently referred to as pressure-weighted interpolation or Rhie–Chow interpolation, is to 
evaluate the velocity at the faces based on weighting coefficients that are derived from the discretised momentum equations, 
including pressure gradients. By construction, the MWI emulates a staggered variable arrangement, introducing a cell-to-cell 
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