
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Source code optimization using equivalent mutants

Jorge López⁎,a, Natalia Kushika, Nina Yevtushenkob

a SAMOVAR, CNRS, Télécom SudParis, Université Paris-Saclay, 9 rue Charles Fourier, Évry 91000, France
b Ivannikov Institute for System Programming of the Russian Academy of Sciences, 25 Alexander Solzhenitsyn street, Moscow 109004, Russia

A R T I C L E I N F O

Keywords:
Program / code optimization
Mutation (software) testing

A B S T R A C T

Context: A mutant is a program obtained by syntactically modifying a program’s source code; an equivalent mutant
is a mutant, which is functionally equivalent to the original program. Mutants are primarily used in mutation
testing, and when deriving a test suite, obtaining an equivalent mutant is considered to be highly negative,
although these equivalent mutants could be used for other purposes.

Objective: We present an approach that considers equivalent mutants valuable, and utilizes them for source
code optimization. Source code optimization enhances a program’s source code preserving its behavior.

Method: We showcase a procedure to achieve source code optimization based on equivalent mutants and
discuss proper mutation operators.

Results: Experimental evaluation with Java and C programs demonstrates the applicability of the proposed
approach.

Conclusion: An algorithmic approach for source code optimization using equivalent mutants is proposed. It is
showcased that whenever applicable, the approach can outperform traditional compiler optimizations.

1. Introduction

Source code optimization is a process which enhances a program’s
source code, in order to obtain a functionally equivalent program, i.e., a
program which computes the same solution for the same problem but,
possesses better non-functional aspects. Traditionally, source code op-
timization techniques are implemented on compilers [1].

Program mutants are used in mutation testing [2], a software testing
technique whose main idea is to modify the original source code to
obtain a mutant that should be later distinguished from the original
program by a test case. The program modification is performed using a
mutation operator; a mutation operator performs changes to the original
source code. When applying a mutation operator, an equivalent pro-
gram called an equivalent mutant can be obtained. Mutation testing at-
tempts to detect and avoid equivalent mutants [3]. We note that de-
tecting equivalent mutants using compiler optimizations is well
established [4]. However, to the best of our knowledge, the first pub-
lication where a novel use of equivalent mutants is discussed, appeared
recently [5]; the authors show that equivalent mutants can be used for
static anomaly detection, e.g., to detect if the mutated code possesses
better readability, better execution time, etc. However, the authors do
not study nor outline a procedure where mutation operators are used
for source code optimization.

Equivalent mutants can provide an optimized source code in terms
of its (program/binary) execution time and other aspects. However, to
effectively use the software mutation technique for source code opti-
mization, several questions should be addressed: what are the mutation
operators which can provide such optimizations? how to apply such
mutation operators for optimization purposes? what is the benefit of the
mutation-based source code optimization compared to traditional
source code optimization? This paper is devoted to answer these
questions; further, we perform preliminary experiments with a muta-
tion software, μJava [2], which showcase the applicability and effec-
tiveness of the proposed approach (Section 3).

2. Equivalent mutants for source code optimization

Given a (computer) program � , we denote �� its associated source
code. � is obtained from �� through a proper compilation process, i.e.,
a function C: Σ*↦{0, 1}* that maps a program’s source code (a string
over a particular programming language alphabet Σ) into a binary (or
executable) code, i.e., � ��= C (). We denote the set of all possible
inputs for � as I; correspondingly, O is the set of all possible outputs of
� . An input sequence is denoted as α∈ I*; correspondingly, an output
sequence β∈O* is the program’s output response to this sequence,
denoted as �out α(,)1. We consider a program’s running time under a

https://doi.org/10.1016/j.infsof.2018.06.013
Received 13 December 2017; Received in revised form 22 June 2018; Accepted 25 June 2018

⁎ Corresponding author.
E-mail addresses: jorge.lopez@telecom-sudparis.eu (J. López), natalia.kushik@telecom-sudparis.eu (N. Kushik), evtushenko@ispras.ru (N. Yevtushenko).

1 We assume that the program is deterministic and, therefore, such output is unique.

Information and Software Technology xxx (xxxx) xxx–xxx

0950-5849/ © 2018 Elsevier B.V. All rights reserved.

Please cite this article as: Lopez, J., Information and Software Technology (2018), https://doi.org/10.1016/j.infsof.2018.06.013

http://www.sciencedirect.com/science/journal/09505849
https://www.elsevier.com/locate/infsof
https://doi.org/10.1016/j.infsof.2018.06.013
https://doi.org/10.1016/j.infsof.2018.06.013
mailto:jorge.lopez@telecom-sudparis.eu
mailto:natalia.kushik@telecom-sudparis.eu
mailto:evtushenko@ispras.ru
https://doi.org/10.1016/j.infsof.2018.06.013

given input sequence α, in a common and predefined architecture,
measured in milliseconds (ms) and denoted as �t α(,). Correspondingly,
we denote the overall running time of a program � with respect to a set of
input sequences M as �= ∑ ∈

τ t α(,)α M .

A program � is M-equivalent to �′ (written � �≡ ′
M

) if
� �∀ ∈ = ′α M out α out α(,) (,). We focus on program M-equivalence

due to the fact that in the general case, the problem of checking the
equivalence of two arbitrary programs is undecidable. However, in
some cases, equivalence with respect to a finite set of inputs implies
complete functional equivalence when having a behavior model [6].
Furthermore, many programs are used only within a context, receiving
only a subset of possible (defined) inputs, or the program is only de-
veloped for a subset of inputs. Likewise, it is well-known that regression
tests (a finite subset of the program inputs) are becoming an industry
standard, and they somehow guarantee that a new version (including
an optimized one) behaves as required.

A source code optimization process is a function which receives a
source code and produces a new (optimized) source code � ↦: Σ* Σ*.
The obtained source code compiles to a functionally equivalent pro-
gram with respect to an input set M, i.e., � � �� �≡C C() (())

M
. As it is

not possible to derive an algorithmic approach to compute the time
complexity of a program, optimality is considered with respect to the
overall running time of a program, i.e,

� � �� �∑ < ∑∈ ∈
t C α t C α((()),) ((),)α M α M .

Arcaini et al. [5] showcased that mutants can be better than the
original source code, including the case when the mutated source code
has better time complexity than the original one. However, no discus-
sion was performed on how equivalent mutants can be exploited.
Therefore, the problem stated and solved in this paper is as follows:
how can source code optimization be forced by the use of source code
mutation? It is important to highlight that the use of source code mu-
tants to enhance the source code’s non-functional properties is limited
in the literature; for a comprehensive survey on the subject the inter-
ested reader can refer to [7].

We assume that there exist certain mutation operators which are
more likely to provide source code optimization due to their nature.
Operators as statement deletion can optimize the source code by per-
forming a dead code elimination, arithmetic operator replacement can
optimize the source code by performing operators’ strength reduction,
etc. [1]. Nevertheless, compiler optimizations are likely to be more
effective while performed on target by a compiler. Therefore, the
question arises: are there any mutation operators that can produce
source code optimizations which are different from the known compiler
optimizations? Indeed, we collected the following set of mutation op-
erators based on the method-level mutation operators of μJava [2]:

• Relational Operator Replacement (ROR): replaces relational opera-
tors with others, e.g., >= with >. In certain cases, avoiding to
execute the code when the condition reaches equality can enhance
the performance (as shown in [5]), for example, when searching for
the maximum number within an array as shown in the following
code snippet (hereafter Δ denotes the difference/replacement, i.e.,
the obtained mutant).

• Shortcut Assignment Operator Replacement (ASR): replaces shortcut
assignment operators with other shortcut assignment operators, e.g.,
+= with *=. In certain cases, advancing faster in the progression
can avoid the execution of loop cycles, for example, when working
over the powers of a given number as shown in the following code
snippet.

• Arithmetic Operator Replacement (AOR): replaces arithmetic op-
erators with others, e.g., from + to *; similar to ASR, AOR can help
advancing faster in the progressions.

We are interested in the set of mutation operators that perform
different optimizations from traditional compiler optimizations, and
can be applicable to different programming languages. Let

=μ ROR ASR AOR{ , , } be the set of mutation operators of interest. This
set can be always extended by adding other mutation operators that can
also perform compiler optimizations. We aim at limiting the mutation
operators to be considered in order to avoid deriving mutants that do
not optimize the source code. Indeed, executing all mutants against the
set of inputs M may take a very long time. However, we note that even
if the optimization process takes more time than executing the original
program once, the time investment can be worthy for widespread
programs which may be executed in millions of devices, or systems for
which critical components are executed millions of times. Furthermore,
selecting the critical parts of the code to be optimized can aid to reduce
the complexity of this approach.

We propose Algorithm 1 for source code optimization using
equivalent mutants. Hereafter, mutate denotes a mutation function
which takes the mutation operator and the source code to mutate as
parameters, and produces a set of mutants of the corresponding type.
The resulting optimizations depend on the set of inputs M on which the
program is stimulated.

Algorithm 1 returns a source code which compiles to a program that
is M-equivalent to the initial one. Therefore, for assuring the program
equivalence, one can derive a set M of inputs as a complete/exhaustive
test suite which guarantees that the original and optimized programs
have the same behavior [6]. In fact, the more precise this set M is
constructed, the higher is the guarantee of the equivalence between the
optimized and the original programs.

3. Preliminary experimental results

As a simple case study, we chose the source code of an intricate Java
function which given a binary string, returns its integer value. Note that
in this source code there is no verification that the string is indeed
binary, however, we do not focus on such enhancements. The source
code is shown below.

J. López et al. Information and Software Technology xxx (xxxx) xxx–xxx

2

Download English Version:

https://daneshyari.com/en/article/8953928

Download Persian Version:

https://daneshyari.com/article/8953928

Daneshyari.com

https://daneshyari.com/en/article/8953928
https://daneshyari.com/article/8953928
https://daneshyari.com

