Information and Software Technology xxx (XXXX) XXX—XXX

Contents lists available at ScienceDirect

IFORMATION
AND
SOFTWARE
TECHNOLOGY

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Using simulation for understanding and reproducing distributed software
development processes in the cloud

M. Ilaria Lunesu™?, Jiirgen Miinch®, Michele Marchesi¢, Marco Kuhrmann‘

@ Department of Electrical and Electronic Engineering, University of Cagliari, Italy

® Herman Hollerith Center, Boblingen & Reutlingen University, Germany

© Department of Mathematics and Computer Science University of Cagliari, Italy

9 Clausthal University of Technology, Institute for Applied Software Systems Engineering, Germany

ARTICLE INFO ABSTRACT

Keywords: Context: Organizations increasingly develop software in a distributed manner. The Cloud provides an environ-
Scrum ment to create and maintain software-based products and services. Currently, it is unknown which software

Kanban ) ) processes are suited for Cloud-based development and what their effects in specific contexts are.
Erocess f”mﬂatwn Objective: We aim at better understanding the software process applied to distributed software development
omparison

using the Cloud as development environment. We further aim at providing an instrument, which helps project
managers comparing different solution approaches and to adapt team processes to improve future project ac-
tivities and outcomes.

Method: We provide a simulation model, which helps analyzing different project parameters and their impact
on projects performed in the Cloud. To evaluate the simulation model, we conduct different analyses using a
Scrumban process and data from a project executed in Finland and Spain. An extra adaptation of the simulation
model for Scrum and Kanban was used to evaluate the suitability of the simulation model to cover further
process models.

Results: A comparison of the real project data with the results obtained from the different simulation runs
shows the simulation producing results close to the real data, and we could successfully replicate a distributed
software project. Furthermore, we could show that the simulation model is suitable to address further process
models.

Conclusion: The simulator helps reproducing activities, developers, and events in the project, and it helps
analyzing potential tradeoffs, e.g., regarding throughput, total time, project size, team size and work-in-progress
limits. Furthermore, the simulation model supports project managers selecting the most suitable planning al-
ternative thus supporting decision-making processes.

1. Introduction in the spotlight. It is crucial to understand how agile methods “behave”

in distributed software development as adapting and deploying an agile

Being able to collaborate effectively has become a crucial factor in
software development and maintenance. Organizations increasingly
develop software in a distributed manner by appointing external de-
velopers and development teams, who collaboratively work at different
sites utilizing a multitude of communication tools [9,36]. Literature
shows distributed software development being challenged by many
factors, e.g., distance in language, culture, time and location, co-
ordination of distributed (virtual) teams, and lack of trust among de-
velopers [18,40]. Notably agile software development constitutes a
challenge, as agile software development relies on a set of principles
and values that put the people and close collaboration and interaction

* Corresponding author.
E-mail address: ilaria.lunesu@diee.unica.it (M.I. Lunesu).

https://doi.org/10.1016/j.infsof.2018.07.004

method to a project spanning several sites bears some risk [28].

A simulation-based approach grounded in statistical data from
previous projects can help analyzing risks and evaluating different
process variants [23,52], but also helps evaluating decisions and po-
tential effects on a project [8]. Moreover, a process simulation offers
insights faster than a full case study [14, pp. 11-13]. In particular, a
simulation model can be modified and the results quickly provide in-
dication whether or not modified parameters affect a project and
how—so-called “what-if” analyses [56]. For example, while it is hard to
modify the team in a “real” project, in a simulation, modifying the team
size parameter helps analyzing the impact, e.g., on work-in-progress

Received 28 January 2018; Received in revised form 2 July 2018; Accepted 3 July 2018

0950-5849/ © 2018 Elsevier B.V. All rights reserved.

Please cite this article as: Lunesu, M.L., Information and Software Technology (2018), https://doi.org/10.1016/j.infsof.2018.07.004



http://www.sciencedirect.com/science/journal/09505849
https://www.elsevier.com/locate/infsof
https://doi.org/10.1016/j.infsof.2018.07.004
https://doi.org/10.1016/j.infsof.2018.07.004
mailto:ilaria.lunesu@diee.unica.it
https://doi.org/10.1016/j.infsof.2018.07.004

M.I Lunesu et al.

(WIP), lead/cycle time, and team productivity. Furthermore, a simu-
lation model provides flexibility to allow for configuring different
process models, running simulations on a shared dataset, and to com-
pare and study aspects of interest of different process models. For in-
stance, project managers interested in minimizing cycle times can use a
simulation to compare the behavior of Scrum- and Kanban-based pro-
cesses to pick the process variant promising the best performance. In
this regard, a simulation can be utilized to modify parameters, find
relations between parameters, and study complex processes over time.
According to Kellner et al. [23] and Armbrust et al. [8], a simulation
used this way can help reproducing a real system, compare variants,
identify bottlenecks, and so forth. Hence, a process simulation is a tool
to help project managers analyzing different actions, evaluating impact,
and eventually selecting those actions best fitting a particular situation
[29].

1.1. Problem statement

Even though globally distributed software development (also called
Global Software Development; GSD, or Global Software Engineering;
GSE) is around for years, still, practitioners struggle with effectively
adapting agile methods [28]. In this context, the Cloud provides a
highly flexible environment offering a variety of services. However,
little is known which processes are used for distributed development
using the Cloud as software development environment, how these pro-
cesses are used and customized, and how they might differ from other
approaches.

1.2. Objective

Our overall objective is to better understand the software process
applied in GSE settings, notably settings using the Cloud as develop-
ment environment. Based on real project data,’ a simulation-based
approach was chosen to improve the understanding of such processes
and to support project managers to select and tailor software processes
for Cloud-based distributed software development. Hence, an objective
of the presented work is also to show feasibility/reliability of using
simulation models, e.g., for projects in the Software Factory environ-
ment. Finally, we aim at providing an instrument, which helps project
managers comparing different solution approaches and to adapt current
team processes to improve future project activities and outcomes.

1.3. Contribution

An event-driven simulator [7] was configured using a Scrumban
process with the number of user stories and their effort and priority in
the backlog as input. The simulator helps reproducing activities, de-
velopers, user stories and events in the project, and it generates sta-
tistics, e.g., on throughput, total time, and lead and cycle time. The
resulting simulation model can be customized to simulate different
processes. Specifically, in addition to the Scrumban process, we also
modeled “pure” Scrum and Kanban processes to allow for comparing
the different processes with regard to project performance thus sup-
porting project managers in selecting the best-fitting development ap-
proach for a specific scenario.

1.4. Outline

The remainder of the article is organized as follows: Section 2
provides an overview of related work. In Section 3, we describe the
research design including research questions, simulation variables, and

1 For seven weeks, six developers in Finland and six in Spain, located at three
sites (two in Spain and one in Finland) worked on a project developing a
SmartGrid system. See Section 4.1 for further details.

Information and Software Technology xxx (xxxX) XXX—-XXX

the specification and implementation of the simulation model. Section 4
presents the results from the different simulations. We conclude this
article in Section 5.

2. Related work
2.1. Software Processes and GSE

Globally distributed software development has become commodity,
and it was showcased that distributed teams and even outsourced teams
can be as productive as small collocated teams [43], which, however,
requires a full implementation of Scrum along with good engineering
practices. Paasivaara et al. [34] state that agile methods can provide a
competitive advantage by delivering early, simplifying communication
and allowing the business to respond more quickly to the market by
changing the software. To support this claim, authors present a multi-
case study on the application of Scrum practices to three globally dis-
tributed projects discussing challenges and benefits. In this regard,
Phalnikar et al. [35] propose two team structures for implementing
Scrum in a distributed setting. However, deploying agile methods to a
GSE-setting is challenging for several reasons, such as demanding
communication in a distributed setup, challenges related to coordina-
tion, and collaboration [5,28,49], and there is yet no agreement on
generalizable solution approaches. For instance, while Vallon et al. [49]
discuss how agile practices can help improving or resolving such issues
and found Scrum the most promising/successful development ap-
proach, Lous et al. [28] found GSE challenging Scrum, especially when
it comes to scaling the process in the context of (large) distributed
settings. Wang et al. [53] state that using agile methods helps miti-
gating challenges in co-located as well as in distributed teams, e.g.,
responding to fast-paced changes that occur in software projects. All the
factors above influence the way in which software is defined, built,
tested, and delivered. Ramesh et al. [37] discuss how to integrate and
balance agile and distributed development approaches to address such
typical challenges in distributed development.

Complementing the “pure” agile approaches, Lean approaches have
gained significance in the software industry, and they are used in co-
located and distributed settings alike. Such approaches focus on elim-
inating waste, e.g., [33], yet, these approaches are still under study,
notably with regards to the question if and how these approaches help
mitigating the various challenges in GSE. For instance, Tanner and
Dauane [44] study Kanban and highlight those elements that can help
alleviating communication and collaboration issues in GSE. Kanban is a
development approach, which applies Lean principles [1,2,22] and is
becoming increasingly popular as an effective extension of Scrum and
other agile methods. However, even though Kanban’s popularity is in-
creasing, many questions regarding its adoption in software develop-
ment remain open. Practitioners face serious challenges while im-
plementing Kanban, since clear definitions of its practices, principles,
techniques, and tools are missing. In response, distributed teams use a
plethora of specific tools to facilitate collaborative work [36]. However,
different studies suggest the projects’ processes being selected in a
pragmatic rather than in a systematic manner [25,45,50], and studies
also suggest agile methods stepping into the background when it comes
to define proper tool support [16]. On the other hand, GSE is a dis-
cipline that is maturing, as for instance Smite et al. [51] show in their
discussion of available empirical evidence in the field or Ebert et al.
[13] who discuss the impact of GSE-related research to industry. That
is, there is a variety of software processes and support tools used in
practice. Such combinations are usually made in response to the re-
spective project context [25], which gives project managers a hard time
picking the most efficient process-tool combination for a project.

2.2. Software process simulation

Software Process Modeling Simulation (SPMS) is presented as a



Download English Version:

https://daneshyari.com/en/article/8953937

Download Persian Version:

https://daneshyari.com/article/8953937

Daneshyari.com


https://daneshyari.com/en/article/8953937
https://daneshyari.com/article/8953937
https://daneshyari.com

