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a b s t r a c t

The claim of inflationary cosmology to explain certain observable facts, which the Friedmann-Roberston-
Walker models of ‘Big-Bang’ cosmology were forced to assume, has already been the subject of signif-
icant philosophical analysis. However, the principal empirical claim of inflationary cosmology, that it can
predict the scale-invariant power spectrum of density perturbations, as detected in measurements of the
cosmic microwave background radiation, has hitherto been taken at face value by philosophers.

The purpose of this paper is to expound the theory of density perturbations used by inflationary
cosmology, to assess whether inflation really does predict a scale-invariant spectrum, and to identify the
assumptions necessary for such a derivation.

The first section of the paper explains what a scale-invariant power-spectrum is, and the requirements
placed on a cosmological theory of such density perturbations. The second section explains and analyses
the concept of the Hubble horizon, and its behaviour within an inflationary space-time. The third section
expounds the inflationary derivation of scale-invariance, and scrutinises the assumptions within that
derivation. The fourth section analyses the explanatory role of ‘horizon-crossing’ within the inflationary
scenario.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In the past couple of decades, inflationary cosmology has been
the subject of trenchant criticism in some quarters. The criticism
has come both from physicists (Penrose, 2004, 2010, 2016;
Steinhardt, 2011), and philosophers of physics (Earman, 1995,
Chapter 5; Earman & Mosterin, 1999). The primary contention is
that inflation has failed to deliver on its initial promise of supplying
cosmological explanations which are free from dependence on very
special initial conditions.

Inflation was initially promoted as a theory which explained
certain observable astronomical facts that the Friedmann-
Roberston-Walker (FRW) models of ‘Big-Bang’ cosmology were
forced to assume, or explain by means of fine-tuned initial condi-
tions (Guth, 1981). The most prominent examples of this were
dubbed the ‘horizon problem’ and the ‘flatness problem’, (McCoy,
2015).

In the first case, points in the cosmic microwave background sky
with a large angular separation, possess very similar temperatures
despite the fact that there was insufficient time in an FRW model
for these regions to have causally interacted before the time of

‘recombination’, when the photons in the background radiation
effectively decoupled from the matter. In the second case, it was
pointed out that the current value of the density parameter U0 is
very close to 1, despite the fact that U0 ¼ 1 is an unstable fixed
point of the FRW dynamics (Smeenk, 2012).

At first sight, inflation was able to explain these facts as the
result of evolutionary processes rather than initial conditions. Its
failure to deliver on this promise is rooted in the fact that inflation
was also tasked with reproducing the spectrum of density pertur-
bations ultimately responsible for seeding galaxy formation,
(‘structure formation’). In order to produce the correct statistics, the
scalar field responsible for the hypothetical period of exponential
expansion had to be parameterised in a fashion inconsistent with
any candidate field available in a Grand Unified Theory of particle
physics, (Smeenk, 2012).

It became clear that the predictions of inflation were extremely
sensitive to the type of scalar field chosen, and to the initial con-
ditions of that field: “The original models of inflationary cosmol-
ogy…predicted an amplitude of density fluctuations that was too
high by several orders of magnitude. To get the right order of
magnitude, the false vacuum plateau of the inflaton field has to be
very flat … For a slow roll potential, the ratio of the change in po-
tential to the change in the scalar field must be less than 10�6 e
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scenario the ratio must be less than 10�15,” (Earman & Mosterin,
1999).

Moreover, once inflation was no longer tied down to the world
of particle physics, a cornucopia of different models was unleashed:
“Martin, Ringeval and Vennin (2014a) have catalogued and
analyzed a total of 74(!) distinct inflaton potentials that have been
proposed in the literature: all of them corresponding to aminimally
coupled, slowly-rolling, single scalar field driving the inflationary
expansion. And a more detailed Bayesian study (Martin, Ringeval,
Trotta, & Vennin, 2014b), expressly comparing such models with
the Planck satellite's 2013 data about the CMB, shows that of a total
of 193(!) possible models e where a ‘model’ now includes not just
an inflaton potential but also a choice of a prior over parameters
defining the potentiale about 26% of the models (corresponding to
15 different underlying potentials) are favored by the Planck data. A
more restrictive analysis (appealing to complexity measures in the
comparison of different models) reduces the total number of fav-
oured models to about 9% of the models, corresponding to 9
different underlying potentials (though all of the ‘plateau’ variety),”
(Azhar & Butterfield, 2017).

Whilst inflationary cosmologists have retreated somewhat from
the claim that their theory is independent of initial conditions, faith
in the theory has instead been built on its empirical success. The
theory, it is claimed, predicts that the spectrum of density pertur-
bations is (almost) scale-invariant, and observations of the cosmic
microwave background radiation verify this prediction.

The critics of inflation are able to point out that the class of in-
flationary models is so general that it could explain just about any
empirical data. But the claim that inflation predicts a scale-
invariant spectrum is generally accepted without reservation or
further examination.

The purpose of this paper is to expound the theory of density
perturbations used by inflationary cosmology, and to assess
whether inflation really does predict a scale-invariant spectrum.

The first section of the paper explains what a scale-invariant
power-spectrum is, and the requirements placed on a cosmolog-
ical theory of such density perturbations. The second section ex-
plains and analyses the concept of the Hubble horizon, and its
behaviour within an inflationary space-time. The third section ex-
pounds the inflationary derivation of scale-invariance, and scruti-
nises the assumptions within that derivation. The fourth section
analyses the explanatory role of ‘horizon-crossing’ within the in-
flationary scenario.

2. Perturbations and the power spectrum

Given a scalar field rðxÞ representing the density of matter, with
a mean density 〈r〉, the fluctuation field (or ‘perturbation field’) drðxÞ
is defined by

drðxÞ ¼ rðxÞ � �r� ; (2.1)

and the contrast field is defined by

drðxÞ
〈r〉

¼ rðxÞ � 〈r〉
〈r〉

: (2.2)

Let us assume, for convenience, that we are working with a
foliation of space-time in which the global topology of space is ℝ3,
and the spatial curvature is zero. The fluctuation field can be
expressed as an inverse Fourier transform:

drðxÞ ¼ 1

ð2pÞ3
Z

AðkÞeix,kdk ; (2.3)

where ðx;kÞ1x,k is the Euclidean inner product.
This expresses the fluctuation field as the superposition of a

spectrum of wave-like ‘modes’. The k-th mode is eix$k, and the
amplitude of the k-th mode is AðkÞ. The wavelength l of the k-th
mode is related to the wave-vector k by:

l ¼ 2p
jkj ; (2.4)

where jkj is the wave-number. Hence, long wavelength perturba-
tions correspond to small wave-numbers, and short wavelength
perturbations correspond to large wave-numbers.

Now, while the mean value of dr is zero, hdri ¼ 0, the mean of its
square-value is non-zero, hd2r is0. The mean of the square-value is
simply the variance s2

dr
in the fluctuation field:

s2dr ¼
D
d2r

E
s0 : (2.5)

The variance can be expressed in terms of the amplitudes of the
perturbational modes as follows:

s2dr ¼
1

ð2pÞ3
Z

jAðkÞj2dk (2.6)

Assuming the perturbations to the density field are sampled from a
homogeneous and isotropic random field, then the random field
will be spherically symmetric about any point, and this 3-
dimensional integral over the space of wave-vectors k can be
simplified into an integral over wave-numbers k ¼ jkj:

s2dr ¼
1

ð2pÞ3
Z∞
0

jAðkÞj24pk2 dk ; (2.7)

where 4pk2 is the surface area of a sphere of radius k in the
space of wave-vectors.

The square of the modulus of the amplitudes is called the power
spectrum:

PrðkÞ ¼ jAðkÞj2 : (2.8)

Hence, the variance can be expressed as

s2dr ¼
1

2p2

Z
PrðkÞk2dk : (2.9)

The significance, then, of the power spectrum, is that it determines
the contribution of the mode-k perturbations to the total variance.

According to inflationary cosmology, the power spectrum of the
density perturbations is given by a power law:

PrðkÞ ¼ Akn (2.10)

where A is some constant (not to be confused with the Fourier
coefficients above), and the exponent n is called the spectral index.
Inflationary cosmology purportedly predicts that nz1. A power
spectrum with such an exponent is said to be (approximately)
scale-invariant.1

Note that PrðkÞ � k entails that the amplitude of the perturba-
tions increase with k. Greater wave-numbers correspond to shorter

1 The exponent can only be constant over a finite range of wave-numbers. The
convergence of (2.9) requires that n> � 3 for k/0, and n< � 3 for k/∞, (Coles &
Lucchin, 2002, p. 265). Alternatively, the power-law form itself might only be valid
over a finite range of wave-numbers.
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