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NEW FRACTIONAL NONLINEAR INTEGRABLE HAMILTONIAN SYSTEMS

OKSANA YE. HENTOSH, BOHDAN YU. KYSHAKEVYCH, DENIS BLACKMORE,
AND ANATOLIJ K. PRYKARPATSKI

Abstract. We have constructed a new fractional pseudo-differential metrized operator Lie algebra on

the axis, enabling within the general Adler–Kostant–Symes approach the generation of infinite hierarchies
of integrable nonlinear differential-fractional Hamiltonian systems of Korteweg-de Vries, Schrödinger and
Kadomtsev–Petviashvili types. Using the natural quasi-classical approximation of the metrized fractional
pseudo-differential operator Lie algebra, we construct a new metrized fractional symbolic Lie algebra and re-

lated infinite hierarchies of integrable mutually commuting fractional symbolic Hamiltonian flows, modeling
Benney type hydrodynamical systems.

1. Introduction

Nonlinear dynamical systems described by differential-fractional equations (fractional in space, continuous
in time) are currently of great interest [9, 19, 20, 23]. Deriving suitable analogs of integrable nonlinear
differential-fractional equations for known integrable dynamical systems [10, 6, 5, 21, 37] in partial derivatives
is especially important. A derivation scheme, based on certain fractional-operator linear spectral problems
that generate integrable nonlinear differential-fractional equations, was suggested in [7, 13, 26]. The related
fractional differentiation was defined via the resolvent operator in Seeley [32], which was also devised in
[35] for an algebra of pseudo-differential operator symbols. The corresponding construction [26], based on
the Adler–Kostant–Symes [2, 34, 31, 6, 5] scheme, enabled the construction of new integrable hierarchies of
Hamiltonian differential-difference and fractional dynamical systems.

We show that the Lie-algebraic Adler–Kostant–Symes scheme can be also applied to the fractional pseudo-
differential metrized operator algebra based on the Riemann–Liouville [9] fractional derivative, giving rise
to infinite hierarchies of new integrable differential-fractional Hamiltonian systems of the Korteweg–de Vries
(KdV) and nonlinear Schrödinger (NLS) types. The natural quasi-classical approximation [4, 8, 41] of the
basic metrized fractional pseudo-differential operator Lie algebra is used to devise a new metrized fractional
symbolic Lie algebra and construct related infinite hierarchies of integrable mutually commuting fractional
symbolic KdV and NLS type Hamiltonian flows, modeling the well-known [14, 16, 17, 18, 29, 41] Benney
type hydrodynamical systems.

2. Fractional analysis setting

We begin with an associative functional algebra (A; +, ·), A = W∞
2 (R; C)∩ W∞

∞ (R; C), over C, endowed
with the standard Riemann–Liouville fractional derivative Dα : A → A satisfying the semigroup property
Dα(Dβ) = Dα+β [9]. Define on A the following symmetric bilinear form

(2.1) (a, b) :=

∫

R
a(x)b(x)dx,

where a, b ∈ A. The adjoint with respect to (2.1) of the derivative map satisfies

(2.2) (Dα
∗ a, b) = (a,Dαb)

for any a, b ∈ A and acts as

(2.3) Dα
∗ a(x) :=

(−1)n

Γ(n − α)

∫ x

−∞

da(n−1)(y)

(y − x)α−n+1

for any f ∈ A and n = [Re α] + 1 ∈ Z+.
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