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a b s t r a c t

In this paper, metric reduction in generalized geometry is investigated. We show how
the Bismut connections on the quotient manifold are obtained from those on the original
manifold. The result facilitates the analysis of generalized Kähler reduction, which moti-
vates the concept of metric generalized principal bundles and our approach to construct a
family of generalized holomorphic line bundles over CP2 equipped with some non-trivial
generalized Kähler structures.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Generalized complex geometry initiated by N. Hitchin and his school is a simultaneous generalization of symplectic
geometry and complex geometry. Since Marsden–Weinstein reduction is a basic construction in symplectic geometry, it
is natural to explore a generalized version of symplectic reduction in generalized geometry. This topic was treated in great
generality in the formalism of Courant reduction in [1]. When furthermore there is a generalized metric on the Courant
algebroid to be reduced, it also descends to the reduced Courant algebroid under proper conditions. In [2], this ’metric
reduction’ was investigated; in particular, this procedure was checked from the angle of geometry of tangent bundles. The
present paper arises from ourwork [3] on trying to understandmetric reduction from a topological field theoretic viewpoint.

Considerations in generalized geometry are conceptually direct and useful, but the underlying structures often hide in
depth and need careful analysis. For example, generalized Kähler reduction is easily understood from the general procedure
of reduction of Dirac structures, but it contains some sophisticated details from the viewpoint of classical complex geometry.
Some of these were included in [2]. In this paper, we will carry on this investigation.

We pay much attention on the special case of isotropic trivially extended G-actions in the sense of [1], where G is a
compact connected Lie group. With an invariant generalized metric in place, the manifold M under consideration carries
two horizontal distributions τ±, which are central in our paper. Basically, they are used to express the Bismut connections
in the reduced manifold Mred := M/G in terms of Bismut connections in M . This is different from the case of reducing the
Levi-Civita connection on M–In the latter case, a connection of the principal bundle M → Mred naturally arises from the
G-invariant metric g , i.e. the horizontal distribution is just the orthogonal complement H of the vertical distribution. The
Levi-Civita connection on Mred can then be expressed using the Levi-Civita connection on M and the orthogonal projection
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from TM toH. As for reducing Bismut connections, it is not as directly solved as in the ordinary case and should bemotivated
by conceptual considerations in generalized geometry. This investigation of reducing Bismut connections is motivated by
gauging a zero-dimensional supersymmetric σ -model in [3].

When the invariant generalizedmetric is from a generalized Kähler manifoldM, the situation becomesmore interesting.
To get a reduced generalized Kähler manifold, an invariant submanifoldM ⊂ M should be carefully chosen and the reduced
generalized Kähler structure will then sit on Mred = M/G. Hence M only serves as an intermediate object in this procedure.
But in this paper M as a metric generalized principal bundle (see Section 5) proves to have its own interest: The curvatures
of τ± are of type (1, 1) w.r.t. the reduced complex structures J̃± on Mred respectively. Thus any associated complex vector
bundle acquires simultaneously a J̃+-holomorphic structure and a J̃−-holomorphic structure.1 This motivates our approach
to constructing generalized holomorphic vector bundles from generalized Kähler reduction.

The paper is organized as follows. In Section 2, we review the basic content of generalized geometry. The goal of Section
3 is to lay the concrete background for later development by investigating the notion of isotropic trivially extended G-action
in the presence of an invariant generalized metric. Compared with the work in [2], we hardly contain much essentially new
content, but our viewpoint is slightly different. In particular, we include some details of the reduced structures which were
missing in [2], and emphasize the basic role of the distributions k± (Eq. (3.2) is essential for reducing the Bismut connections)
which was not explicitly mentioned in [2]. In Section 4, we mainly tackle the problem of expressing the reduced Bismut
connections in terms of Bismut connections in the original manifold (Theorem 4.1). The curvature of the reduced Bismut
connection is also computed in terms of the reduction data (Theorem 4.3). These computations play a basic role in [3].
The last three sections devote to using generalized Kähler reduction to produce generalized holomorphic vector bundles.
Section 5discusses the notion ofmetric generalized principalG-bundle and its associated relative curvature. Section 6 revisits
generalized Kähler reduction in the spirit of previous sections, and emphasis is put on structures on the intermediate metric
generalized principal G-bundle, which carries a biholomorphic structure. These two sections pave the way for us to produce
generalized holomorphic vector bundles via generalized Kähler reduction in Section 7. We give a sufficient condition for
the biholomorphic structure to be generalized holomorphic in the Hamiltonian case. As examples, we have constructed
generalized holomorphic line bundles on CP2 equipped with non-trivial generalized Kähler structures.

2. Basics of generalized geometry

In this section, we collect the most relevant aspects of generalized geometry. For a detailed account for it, we refer the
reader to [4,5].

In generalized geometry, one considers geometric structures defined on the generalized tangent bundleTM = TM⊕T ∗M
of a smooth manifoldM , or more generally on an exact Courant algebroid overM .

A Courant algebroid E is a real vector bundle E over M , together with an anchor map π to TM , a non-degenerate inner
product and a so-called Courant bracket [·, ·]c onΓ (E). These structures should satisfy some compatibility axioms. E is called
exact, if the short sequence

0 −→ T ∗M
π∗

−→ E
π

−→ TM −→ 0

is exact. In this paper, by ’Courant algebroid’, we always mean an exact one. Given E, one can always find an isotropic right
splitting s : TM → E, which has a curvature form H ∈ Ω3

cl(M) defined by

H(X, Y , Z) = ⟨[s(X), s(Y )]c, s(Z)⟩, X, Y , Z ∈ Γ (TM).

By the bundle isomorphism s+π∗
: TM ⊕ T ∗M → E, the Courant algebroid structure can be transported onto TM . Then the

inner product ⟨·, ·⟩ is the natural pairing, i.e. ⟨X + ξ, Y + η⟩ = ξ (Y ) + η(X), and the Courant bracket is

[X + ξ, Y + η]H = [X, Y ] + LXη − ιYdξ + ιY ιXH, (2.1)

called the H-twisted Courant bracket. Different splittings are related by B-field transforms, i.e. eB(X + ξ ) = X + ξ + ιXB,
where B is a 2-form.

A maximal isotropic subbundle L ⊂ E is called an almost Dirac structure. If L is involutive w.r.t. the Courant bracket, it is
called a Dirac structure. These notions can be extended directly to the complexified setting which interests us most.

Definition 2.1. A generalized complex structure on E is a complex structure J on E orthogonal w.r.t. the inner product and
whose

√
−1-eigenbundle L ⊂ E ⊗ C is a complex Dirac structure.

Since J and its
√

−1-eigenbundle L are equivalent notions, we shall use them interchangeably to denote a generalized
complex structure. At a point x ∈ M , the codimension of π (Lx) in TxM ⊗ C is called the type of J at x. Type can vary along
some subset ofM , which makes the local geometry of generalized complex structures rather non-trivial.

A generalized complex structure L is an example of complex Lie algebroids. Via the inner product, ∧·L∗ can be identified
with ∧

·L̄, and we have an elliptic differential complex (Γ (∧·L̄), dL), which induces the Lie algebroid cohomology associated
with the Lie algebroid L. The differential complex can be twisted by an L-module.

1 Similar phenomenon, of course, occurs in ordinary Kähler reduction but is seldom emphasized in the literature.
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