Torsion subgroups of elliptic curves over function fields of genus 0

Robert J.S. McDonald
Dept. of Mathematics, University of Connecticut, 341 Mansfield Road U1009, Storrs, CT 06269, United States of America

A R T I C L E I N F O

Article history:

Received 25 September 2017
Received in revised form 1 March 2018
Accepted 7 May 2018
Available online xxxx
Communicated by A. Pal

Keywords:

Elliptic curve
Function field
Torsion subgroup
Torsion
Genus
Genus 0

Abstract

Let $K=\mathbb{F}_{q}(T)$ be the function field of a finite field of characteristic p, and E / K be an elliptic curve. It is known that $E(K)$ is a finitely generated abelian group, and that for a given p, there is a finite, effectively calculable, list of possible torsion subgroups which can appear. For $p \neq 2,3$, a minimal list of prime-to- p torsion subgroups has been determined by Cox and Parry. In this article, we extend this result to the case when $p=2,3$, and determine the complete list of possible full torsion subgroups which can appear, and appear infinitely often, for a given p.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In what follows, let p be a prime, q a power of p, and $k=\mathbb{F}_{q}$ a finite field of cardinality q. Let \mathcal{C} be a smooth, projective, absolutely irreducible curve over k, and write $K=k(\mathcal{C})$ for its function field. In this paper, we will primarily be interested in the case when $\mathcal{C}=\mathbb{P}^{1}$, so that $K=k\left(\mathbb{P}^{1}\right)=k(T)$ is the rational function field of k. An elliptic

[^0]curve E / K is a smooth, projective, absolutely irreducible curve of genus 1 over K, with at least one K-rational point. The curve E can always be written in long Weierstrass form:
$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \text { for } a_{i} \in K
$$
and when $p>3$, we can write $E: y^{2}=x^{3}+A x+B$ for $A, B \in K$.
We have the usual definitions for the invariants associated to E (for example in [9]), including the discriminant, Δ, and the j-invariant, all of which are elements in K. In addition, we will consider the Hasse invariant of E, which we will denote $H(E)$. When $p=2$, for a curve written in long Weierstrass form, the Hasse invariant is the coefficient a_{1}. When $p>2$, we may choose an equation with $a_{1}=a_{3}=0$, in which case the Hasse invariant of E is the coefficient of x^{p-1} in $\left(x^{3}+a_{2} x^{2}+a_{4} x+a_{6}\right)^{\frac{p-1}{2}}$ [11, p. 18].

Definition 1.1. Assume that $K=\mathbb{F}_{q}(\mathcal{C})$ is the function field of a curve over a finite field and let E be an elliptic curve over K.
(1) E is constant if there is an elliptic curve E_{0} defined over k such that $E \cong E_{0} \times_{k} K$, where " $E_{0} \times_{k} K$ " is the fiber product of E_{0} and K. Equivalently, E is a base extension of E_{0} / k to K; it is constant if and only if it can be defined by a Weierstrass cubic with coefficients in k.
(2) E is isotrivial if there exists a finite extension K^{\prime} of K such that E becomes constant over K^{\prime}. Equivalently, $j(E) \in k$, where $j(E)$ is the j-invariant of E.
(3) E is non-isotrivial if it is not isotrivial, and non-constant if it is not constant.

As in the case of elliptic curves over number fields, we have the following description of the structure of $E(K)$, the set of K-rational points of E.

Theorem 1.2 (Mordell-Weil-Lang-Néron, [5]). Assume that $K=\mathbb{F}_{q}(\mathcal{C})$ is the function field of a curve over a finite field and let E be an elliptic curve over K. Then, $E(K)$ is a finitely generated abelian group.

As an immediate corollary, we have that $E(K)_{\text {tors }}$ is finite. In fact, we have

$$
E(K)_{\mathrm{tors}} \cong \mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / m \mathbb{Z}
$$

where m divides n, and p does not divide m, and every such group appears for some K (of some genus) and $E[11$, p. 16]. The following proposition tells us that for any fixed genus g of \mathcal{C} and characteristic p, there are only finitely many possibilities for m and n.

Proposition 1.3 (Ulmer, [11]). Let g be the genus of \mathcal{C}. Then, there is a finite (and effectively calculable) list of groups depending only on g and p, such that for any non-isotrivial elliptic curve E over K, the group $E(K)_{\text {tors }}$ appears on the list.

https://daneshyari.com/en/article/8959498

Download Persian Version:

https://daneshyari.com/article/8959498

Daneshyari.com

[^0]: E-mail address: robert.j.mcdonald@uconn.edu.
 https://doi.org/10.1016/j.jnt.2018.05.017
 0022-314X/® 2018 Elsevier Inc. All rights reserved.

