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A B S T R A C T

Crop growth conditions and meteorological environments are observed and recorded by agro-meteorological
stations, which, however, may fail to record crop yield data in some specific years. In this context, incomplete
yield series data constrain their application and result in inconvenience in information mining. Accordingly, this
study improves the existing spatio-temporal interpolation method and succeeds in interpolating wheat yield data
observed and recorded by 56 agro-meteorological stations on the Huang-Huai-Hai Plain of China. In this study,
pre-interpolation is first implemented to improve the completion rate of interpolation and eliminate the effect of
absent neighboring values on the positions to be interpolated. Then, data reconstruction is performed in spatial
and temporal dimensions based on spatio-temporal heterogeneity. Finally, the reconstructed results are com-
bined with the back propagation (BP) neural network model for spatio-temporal integration. Moreover, this
study analyzes the settings of key parameters and compares them with traditional interpolation methods.
Corresponding results demonstrate the superiority of the proposed method in this study over traditional inter-
polation methods in terms of interpolation precision and the completion rate. Meanwhile, individual inter-
polation precision in each step of the proposed method is effectively enhanced.

1. Introduction

Agro-meteorological stations are generally used to implement long-
term observations and records on field-level wheat data such as main
growth periods, main growth indicators, and yield structure as well as
to provide other agricultural parameters such as soil types and me-
teorological data (Nilakanta et al., 2008). These observation records are
used as data sources for comparison between models and baseline
period analyses by the Agricultural Model Intercomparison and Im-
provement Project (AgMIP) (Rosenzweig et al., 2013). Moreover, such
data are also included in studies on wheat growth model parameter
settings (Lv et al., 2016), model simulation result validation (Zhang
et al., 2017), model uncertainty analysis (Liu et al., 2018), temporal and
spatial distribution characteristics of wheat yields (Chen et al., 2018),
and the influence of meteorological conditions on wheat growth (Liu
et al., 2014).

The original wheat growth report data are vulnerable to many
quality issues due to record deviations and non-standard information

preservation, and the incompleteness of the data hinders their appli-
cation in various research. Existing studies have tried to select typical
ecological points (Bai et al., 2016) to avoid meteorological stations with
incomplete data or reconstruct missing data by spatial interpolation or
time series interpolation. For spatial interpolation, commonly used
methods include inverse distance weighted (IDW) interpolation, kriging
interpolation, and geographic weighted regression (Vergni and Todisco,
2011). However, spatial interpolation precision can hardly meet the
demand due to the large amount of data affecting crop yield as well as
the large distances between agro-meteorological stations. Meanwhile,
time series interpolation methods are mainly based on simple averages
of neighboring data (Berhanu et al., 2015), linear interpolation (Feng
et al., 2017) or neural network simulation (Prasomphan and Mase,
2013) to reconstruct the missing data. However, they fail to address
conditions in which data are continuously or intermittently missing,
which excludes those stations with long-term data missing from the
research content (Asfaw et al., 2017) or results in the compromising use
of the average value of the entire time series to represent the data from
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those stations (Osman and Sauerborn, 2002). Recently developed
spatio-temporal integration interpolation schemes have been widely
used in the interpolation of meteorological observation data. However,
they are rarely reported in direct reconstructions of crop yield ob-
servation data. As an improved linear interpolation method based on
traditional spatial interpolation models, spatio-temporal integration
interpolation mainly includes spatio-temporal inverse distance
weighting (ST-IDW), spatio-temporal kriging (ST-kriging), and geo-
graphical and temporal weighted regression (GTWR) (Fotheringham
et al., 2015; Snepvangers et al., 2003). It is an extension of the tradi-
tional methods in the temporal dimension but fails to solve the pro-
blems in the traditional methods (Deng et al., 2016).

Spatio-temporal heterogeneity has been applied by some recent
studies in reconstructing the missing data. Specifically, an interpolation
method, referred to as the point estimation model of the Biased Sentinel
Hospitals-Based Area Disease Estimation (P-Bshade), is used in the
construction of temperature data from meteorological stations through
establishment of a heterogeneous covariance function that is able to
address spatial heterogeneity (Xu et al., 2013). Some studies further
extend the P-Bshade method in the temporal dimension and combine
the spatio-temporal interpolation results by linear fitting, which results
in higher precision than previous interpolation methods (Zide et al.,
2016). However, this method is of high computational complexity and
fails to cope with the continuously missing data. Accordingly, a two-
step interpolation method for spatio-temporal missing data re-
construction (ST-2SMR) is proposed to improve the interpolation of
urban atmospheric environmental monitoring data (Cheng and Lu,
2017). This method consists of the rough spatio-temporal interpolation
of all the data, subsequent fine interpolation using a dynamic window,
and final spatio-temporal nonlinear combination using the back pro-
pagation (BP) neural network model. Two key issues should be noted in
using ST-2SMR to interpolate wheat yield per unit area: (1) the time
granularity is too coarse for the dynamic window construction since the
time scale of crop yield is annual, and (2) it is not reasonable and proper
to interpolate all the data for the entire area since yield data are not
relevant for two distant meteorological stations. Based on an im-
provement in the window setting of the ST-2SMR method as well as
analysis of key parameter settings, this study finally succeeds in im-
plementing a complete interpolation of all the wheat yield data from
agro-meteorological stations.

2. Methodology and experiment

2.1. Improved ST-2SMR (IST2SMR)

Based on ST-2SMR, this study proposes an improved method for
interpolating wheat yield data from agro-meteorological stations,
which includes five steps, namely, screening sample data for inter-
polation, pre-interpolation for missing values, fine interpolation con-
sidering spatio-temporal heterogeneity, spatio-temporal integration
interpolation modeling, and reconstruction of the wheat yield data from
the stations (Fig. 1).

Step 1. Screening sample data for interpolation

The interpolation dataset in this study is denoted DS_Ini, which
consists of spatial (S) and temporal (T) dimensions. Specifically,
S= {S0, S1, S2, …, Sns}, where S0 is the station to be interpolated, and
S1, S2, …, Sns are ns nearest stations to S0; T= { −Tn nt, …, −Tn 1, Tn, +Tn 1,
…, +Tn nt}, where Tn is the year to be interpolated, and −Tn nt, …, −Tn 1,

+Tn 1, …, +Tn nt are nt years before and after Tn (Fig. 1A). yi
s is denoted by

the yield time series from years −Tn nt to +Tn nt at the ith station, and yj
t is

the yield dataset of all stations at year j.

Step 2. Pre-interpolation for missing values

The pre-interpolation method is used in this study to reduce the
impact of continuously missing data. For all the missing data in DS_Ini,
the IDW (Eq. (1)) interpolation method and the weighted moving
average (Eq. (2)) time series interpolation method are used for inter-
polation, resulting in ̂y spa and ̂y tem, respectively.
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parameter, and a larger α assigns greater influence to values closest to
the interpolated point.

̂ =
∑

∑
y

y w

w
tem j

j
tem

j

j
j

(2)

yj
tem is the observation data at time j and wj is the weight of yj

tem (Eq.
(3)).
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thj is the time interval between interpolation time and observation
time j; n is half of the size of the moving window.

If the number of sample data involved in the interpolation is less
than 3, then the interpolation result is null. If both ̂y spa and ̂y tem are not
null, then the average of ̂y spa and ̂y tem is regarded as the pre-inter-
polation result, denoted by ̂y coarse. If one of ̂y spa and ̂y tem is null, then

̂y coarse is set to the non-null one of the two. Meanwhile, if both ̂y spa and
̂y tem are null, then ̂y coarse is null, which means interpolation failure.

Accordingly, dataset DS_COARSE is obtained (Fig. 1B).

Step 3. Fine reconstruction based on spatio-temporal heterogeneity

All the data in DS_COARSE are reconstructed in spatial and temporal
dimensions. In the spatial dimension, the data from ns stations con-
stitute the time series {y s

1 …yns
s }, which are correlated with the time

series at the station to be interpolated (ys
0 ). Then, the nbr stations with

the highest correlation coefficients are selected, and their spatial in-
terpolation contribution weights (θ1…θnbr) are calculated using the P-
Bshade method (Eq. (4)) (Xu et al., 2013).
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μ is the Lagrange factor; ′C y y( , )i
s

i
s is the covariance between the

yield time series at the ith station and that at the i′th station; and bi is
the ratio of the time series expectation at the ith station over that at the
station to be interpolated (Eq. (5)), which can be used to evaluate the
spatial distribution heterogeneity of the data to be interpolated, and its
value is influenced by and increases with the difference between the
yield at the sample station and that at the station to be interpolated.

=b E y E y( )/ ( )i i
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0 (5)

E y( )i
s represents the expectation of the yield data at the ith station.

E y( )s
0 represents the expectation of the yield series at the interpolated

station without the data to be interpolated.
Based on the spatial contribution weights of the nbr most relevant

stations at the year of Tn as well as the corresponding yield (y T[ ]i
s

n ), the
fine reconstruction in the spatial dimension is achieved, resulting in

̂y FineS (Eq. (6)).
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