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We introduce the family of k-gap-planar graphs for k ≥ 0, i.e., graphs that have a drawing 
in which each crossing is assigned to one of the two involved edges and each edge is 
assigned at most k of its crossings. This definition is motivated by applications in edge 
casing, as a k-gap-planar graph can be drawn crossing-free after introducing at most k
local gaps per edge. We present results on the maximum density of k-gap-planar graphs, 
their relationship to other classes of beyond-planar graphs, characterization of k-gap-planar 
complete graphs, and the computational complexity of recognizing k-gap-planar graphs.

© 2018 Elsevier B.V. All rights reserved.

✩ A preliminary version of this paper appeared in the proceedings of the 25th International Symposium on Graph Drawing [8].
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Fig. 1. A drawing of a graph G (left) and its cased version where each edge is interrupted at most twice, i.e., a 2-gap-planar drawing of G (right).

1. Introduction

Minimizing the overall number of edge crossings in a drawing has been the main objective of a large body of litera-
ture concerning the design of algorithms to automatically draw a graph. In fact, several graph drawing algorithms assume 
the input graph to be planar or planarized (that is, crossings are replaced with dummy vertices which are removed in 
a post-processing step). More recently, cognitive experiments suggested that the absence of specific kinds of edge cross-
ing configurations has a positive impact on the human understanding of a graph drawing [36]. These practical findings 
motivated a line of research, commonly called beyond planarity, whose focus is on non-planar graphs that can be drawn 
by locally avoiding specific edge crossing configurations or by guaranteeing specific properties for the edge crossings (see, 
e.g., [11,33,35,41]).

Among the most investigated families of beyond-planar graphs are: k-planar graphs (see, e.g., [12,39,43]), which can be 
drawn with at most k crossings per edge; k-quasiplanar graphs (see, e.g., [2,3,25]), which can be drawn with no k pairwise 
crossing edges; fan-planar graphs (see, e.g., [9,13,37]), which can be drawn such that each edge is crossed by a (possibly 
empty) set of edges that have a common endpoint on one side; RAC graphs (refer, e.g., to [20]), which admit a straight-line 
drawing with right-angle crossings.

In this paper we introduce a family that generalizes k-planar graphs by introducing a nonsymmetric constraint on the 
intersection pattern of the edges. Intuitively speaking, we charge each crossing to only one of the two edges involved in 
the crossing and do not allow an edge to be charged many times. This constraint is motivated by edge casing, a method 
commonly used to alleviate the visual clutter generated by crossing lines in a diagram [5,24]. In a cased drawing of a graph, 
each crossing is resolved by locally interrupting one of the two crossing edges; see Fig. 1 for an illustration. This edge casing 
makes only one of the edges involved in the crossing hard to follow whereas the other one is unaffected. Regardless of the 
number of crossings, the drawing will remain clear as long as no edge is cased many times; thus, an edge could participate 
in arbitrarily many crossings as long as the other edges are cased. Eppstein et al. [24] studied several optimization problems 
related to edge casing, assuming the input is a graph together with a fixed drawing. In particular, the problem of minimizing 
the maximum number of gaps per edge in a drawing can be solved in polynomial time (see also Section 2). We also note 
that a similar drawing paradigm is used by partial edge drawings (PEDs), in which the central part of each edge is erased, 
while the two remaining stubs are required to be crossing-free (see, e.g., [16,17]).

We formalize this idea with the family of k-gap-planar graphs, a family of graphs that can be drawn in the plane such 
that each crossing is assigned to one of the two involved edges and each edge is assigned at most k crossings (for some 
constant k). We present a rich set of results for k-gap-planar graphs related to classic research questions, such as bounds on 
the maximum density, drawability of complete graphs, complexity of the recognition problem, and relationships with other 
families of beyond-planar graphs. Our results can be summarized as follows:

• Every k-gap-planar graph with n vertices has O (
√

k · n) edges (Section 3). If k = 1, we prove an upper bound of 5n − 10
for the number of edges in a 1-gap-planar multigraph with n vertices (without homotopic parallel edges), and construct 
1-gap-planar (simple) graphs that attain this bound for all n ≥ 20. Note that the same density bound is known to be 
tight for 2-planar graphs [43].

• We study relationships between the class of k-gap-planar graphs and other classes of beyond-planar graphs. For all 
k ≥ 1, the class of 2k-planar graphs is properly contained in the class of k-gap-planar graphs, which in turn is 
properly contained in the (2k + 2)-quasiplanar graphs (Section 4). We note that k-planar graphs are known to be 
(k + 1)-quasiplanar [4,31]. Furthermore, we investigate the relationship between k-gap-planar graphs and d-degenerate 
crossing graphs, a class of graphs recently introduced by Eppstein and Gupta [23].

• The complete graph Kn is 1-gap-planar if and only if n ≤ 8 (Section 5).
• Deciding whether a graph is 1-gap-planar is NP-complete, even when the drawing of a given graph is restricted to a 

fixed rotation system that is part of the input (Section 6). Note that analogous recognition problems for other families 
of beyond-planar graphs are also NP-hard (see, e.g., [7,9,13,14,29,40]), while polynomial algorithms are known in some 
restricted settings (see, e.g., [6,9,14,19,22,34,32]).

Preliminaries and basic results are in Section 2. Conclusions and open problems are discussed in Section 7.
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