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It is well known that the “store language” of every pushdown automaton — the set 
of store configurations (state and stack contents) that can appear as an intermediate 
step in accepting computations — is a regular language. Here many models of language 
acceptors with various store structures are examined, along with a study of their store 
languages. For each model, an attempt is made to find the simplest model that accepts 
their store languages. Some connections between store languages of one-way and two-
way machines are demonstrated, as with connections between nondeterministic and 
deterministic machines. A nice application of these store language results is also presented, 
showing a general technique for proving families accepted by many deterministic models 
are closed under right quotient with regular languages, resolving some open questions (and 
significantly simplifying proofs for others that are known) in the literature. Lower bounds 
on the space complexity of Turing machines for having non-regular store languages are 
obtained.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

A store configuration of a one-way or two-way language acceptor consists of the state followed by the contents of its 
memory (store) structure. It does not include the input and the position of the input head. For example, for a nondeter-
ministic pushdown automaton (NPDA), a store configuration is represented by a string qx, where q is a state and x is the 
contents of the pushdown stack. For multi-tape acceptors, such as for an NPDA augmented with k reversal-bounded coun-
ters (NPCM) [1], the store configuration is represented by the string qxc j1

1 · · · c jk
k , where ji represents the value of counter 

i in unary notation, and the ci symbols and the symbols of x are disjoint. For a machine M , let S(M) be the set of store 
configurations that can appear as an intermediate step in accepting computations of M .

It is well-known that S(M) is a regular language for any NPDA M [2,3]. Greibach used this result to provide an alternative 
proof [3] that regular canonical systems produce regular languages [4]. Also, it was a key component to showing that it is 
decidable whether the set of all infixes (subwords) of the language accepted by a reversal-bounded3 NPDA is equal to �∗
(i.e., is dense) [5]. Connections between store languages and the area of verification and model checking have also been 
recently explored [6].
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Due to the usefulness of the store language concept, the store languages of several models of language acceptors are 
studied in this paper. For machine models with an undecidable emptiness problem, membership in the store language 
is undecidable. Hence, the investigation of store languages is particularly focused on machine models with a decidable 
emptiness problem. Results are given here that generalize (in often non-obvious ways) the aforementioned result concerning 
NPDAs to many other machine models, such as the following:

1. The following nondeterministic machine models with one-way read-only input have regular store languages: k-flip 
pushdown automata [7] (which are like pushdown automata but can flip the pushdown store up to k times), reversal-
bounded queue automata, nondeterministic Turing machines with a reversal-bounded worktape, and stack automata 
[8,9]. The result for stack automata was shown recently [10] and so our result becomes an alternate proof that fol-
lows from existing results in the literature. Also, a new simple but general method is presented for translating results 
between two-way machines and one-way machines.

2. The store languages of finite-crossing4 two-way nondeterministic machines with reversal-bounded counters can be 
accepted by one-way deterministic machines with reversal-bounded counters (DCM).

3. There is a non-finite-crossing two-way deterministic machine with one reversal-bounded counter whose store language 
cannot be accepted by any NPCM.

4. Some machine models (e.g., deterministic pushdown automata with reversal-bounded counters, DPCM) cannot accept 
their own store languages.

NPCMs and NCMs have been extensively studied since their introductions in [1,11]. They have found applications in areas 
such as timed automata [12], model-checking and verification [13,14], membrane computing [15], and Diophantine equa-
tions [16].

Another interesting application is presented here showing the closure of many families of languages accepted by deter-
ministic machines under right quotient with regular languages. Some of these resolve open problems in the literature, and 
others simplify existing known proofs. These include deterministic stack automata (known with a lengthy proof in [17]), de-
terministic k-flip pushdown automata (stated as an unresolved open problem in [18]), certain types of deterministic Turing 
machines, deterministic checking stack automata, and deterministic reversal-bounded queue automata. An alternate proof 
of the result for deterministic pushdown automata that was shown in [19] is also given. This general closure is somewhat 
surprising given the determinism of the machines and the nondeterministic nature of deletion occurring with quotients.

Finally, lower bounds are obtained on the space complexity of different types of Turing machines in order to have 
non-regular store languages.

2. Notation

An alphabet � is a set of symbols (usually assumed to be finite unless stated otherwise). The set of all words over �
is denoted by �∗ , and the set of all non-empty words is denoted by �+ . A language L over � is any subset of �∗ . Given 
a word w ∈ �∗ , the length of w is denoted by |w|. Given a ∈ �, then |w|a is the number of a’s in w . The empty word is 
denoted by ε . The reverse of a word w is denoted by w R , extended to the reverse LR of a language L in the natural way. 
Given two languages L1, L2, the left quotient of L2 by L1, L−1

1 L2 = {y | xy ∈ L2, x ∈ L1}, and the right quotient of L1 by L2

is L1L−1
2 = {x | xy ∈ L1, y ∈ L2}. A language L ⊆ �∗ is letter-bounded if there exists (not necessarily distinct) a1, . . . , al ∈ �

such that L ⊆ a∗
1 · · ·a∗

l . A language L is bounded if there exists w1, . . . , wl ∈ �∗ such that L ⊆ w∗
1 · · · w∗

l . Given two words 
u, v ∈ �∗ , u is a prefix of v if v = ux, for some x ∈ �∗ , u is a suffix of v if v = xu for some x ∈ �∗ , u is an infix of v if 
v = xuy, for some x, y ∈ �∗ , and u is a subsequence of v if v = x0u1x1 . . . xn−1unxn, x0, . . . , xn, u1, . . . , un ∈ �∗, u = u1 · · · un .

In this paper, introductory knowledge of automata and formal language theory is assumed (see [20] for an introduc-
tion), including finite automata (NFAs and DFAs), pushdown automata (NPDAs), Turing machines (NTMs and DTMs), and 
generalized sequential machines (gsms). Let L(REG) be the family of languages accepted by NFAs.

3. Store languages of one-way machines

Many different kinds of machine models are studied in this paper, such as finite automata, pushdown automata [20], 
reversal-bounded multicounter machines [1], stack automata (similar to a pushdown automata with the ability to read, 
but not change on the inside of the pushdown) [8,9], Turing machines [20], queue automata [21], flip-pushdown automata 
(machines with the ability to flip the pushdown at most k times) [7], and also combinations of their stores within individual 
machines. The store language of each depends on the precise definition of each type of machine. It is possible to define all 
such models generally by varying the “store type” similar to Abstract Families of Automata [22] or storage types [23], and 
then the store language only needs to be defined once for all types of machines. A similar approach is followed here due to 
the large number of machine models considered, because it allows to make general connections between types of machines, 
and because store languages depend considerably on the precise definition of the machines.

4 Finite-crossing means that the input head crosses the boundary of any two adjacent input symbols at most a fixed number of times.
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