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a b s t r a c t

Weconsider the trajectory of a tracer that is the solution of an ordinary differential equation
Ẋ(t) = V (t, X(t)), X(0) = 0, with the right hand side, that is a stationary, zero-mean,
Gaussian vector field with incompressible realizations. It is known, see Fannjiang and
Komorowski (1999), Carmona and Xu (1996) and Komorowski et al. (2012), that X(t)/

√
t

converges in law, as t → +∞, to a normal, zero mean vector, provided that the field
V (t, x) is Markovian and has the spectral gap property. We wish to extend this result to
the case when the field is not Markovian and its covariancematrix is given by a completely
monotone Bernstein function.

© 2018 Published by Elsevier B.V.

1. Introduction and some assumptions 1

In this paper we would like to show the central limit theorem for a passive tracer model, when the velocity field is 2

non-Markovian but Gaussian and exponentially mixing in time. 3

Passive tracer model is given by the following equation, 4⎧⎪⎨⎪⎩
dX(t)
dt

= V (t, X(t)) , t > 0,

X(0) = 0,

(1.1) 5

where V : R1+d
×Ω → Rd is a real, d−dimensional, incompressible i.e.

∑d
p=1∂xpVp(t, x) ≡ 0, zero mean, Gaussian random 6

vector field over a probability space (Ω,F,P). 7

This model describes a trajectory of particle motion in an incompressible, disordered flow and has applications e.g. in 8

turbulent diffusion and stochastic homogenization, see Majda and Kramer (1999), Kraichnan (1970), Warhaft (0000) and 9

Sreenivasan and Schumacher (2010). Some basic problems concerning the asymptotic behavior of the tracer are: the law 10

of large numbers (LLN) i.e. whether X(t)/t converges to a constant vector v∗ (called the Stokes drift), as t → +∞ and the 11

central limit theorem (CLT), i.e. whether (X(t) − v∗t)/
√
t is convergent in law to a normal vector N(0, κ). The covariance 12

matrix κ = [κij]i,j=1,...,d is called turbulent diffusivity of the tracer. It is generally believed that, if the field is stationary and 13

sufficiently stronglymixing, then the central limit theoremholds, see e.g. Arnold (1964), Kraichnan (1970) and Taylor (1923). 14

It is expected, seeMajda and Kramer (1999), Arnold (1964) and Kraichnan (1970), that both the LLN, with v∗ = 0, and the 15

CLT for the tracer trajectory hold when the velocity field is zero mean, Gaussian, incompressible and its covariance matrix 16

R(t, x) = [Rpq(t, x)]p,q=1,...,d, given by 17

Rpq(t, x) := E[Vp(t, x)Vq(0, 0)], p, q = 1, . . . , d, (t, x) ∈ R1+d, 18

E-mail address: chojecki.tymoteusz@gmail.com.

https://doi.org/10.1016/j.spl.2018.08.002
0167-7152/© 2018 Published by Elsevier B.V.

https://doi.org/10.1016/j.spl.2018.08.002
http://www.elsevier.com/locate/stapro
http://www.elsevier.com/locate/stapro
mailto:chojecki.tymoteusz@gmail.com
https://doi.org/10.1016/j.spl.2018.08.002


STAPRO: 8306

Please cite this article in press as: Chojecki T., Passive tracer in non-Markovian, Gaussian velocity field. Statistics and Probability Letters (2018),
https://doi.org/10.1016/j.spl.2018.08.002.

2 T. Chojecki / Statistics and Probability Letters xx (xxxx) xxx–xxx

exponentially decays in time, i.e. there exists C > 0 such, that1

d∑
p,q=1

|Rpq(t, x)| ≤ Ce−|t|/C , for all (t, x) ∈ R1+d. (1.2)2

The CLT has been established in Komorowski and Papanicolaou (1997), in the case of T−dependent fields, i.e. those for3

which exists T > 0 such that R(t, x) = 0, |t| > T , x ∈ Rd.4

In case when the vector field V (t, x) is Markovian (not necessarily Gaussian) and satisfies the spectral gap condition, the5

CLT has been established in Fannjiang and Komorowski (1999), Theorem A, see also Komorowski et al. (2012), Carmona and6

Xu (1996) and Koralov (1999). In the Gaussian case when the covariance matrix is of the form7

Rpq(t, x) =

∫
Rd

eix·ξ−γ (ξ )|t|R̂pq(dξ ), p, q = 1, . . . , d, (t, x) ∈ R1+d, (1.3)8

where both γ (·) and non-negative Hermitian matrix valued measure R̂(·) = [R̂pq(·)] are even (because the field is real), then9

the field is Markovian. It can be shown, see Chapter 12 of Komorowski et al. (2012), that the spectral gap condition holds,10

provided there exists γ0 > 0 such that11

γ (ξ ) ≥ γ0, ξ ∈ Rd. (1.4)12

Until now the CLT has not been proved in such a generality for fields satisfying (1.2). We would like to perform a step in13

this direction. In this paper we consider non-Markovian fields, where the exponential factor in (1.3) is replaced by a function14

h : [0,+∞) × Rd
→ R i.e. the covariance matrix is defined as follows15

Rpq(t, x) =

∫
Rd

eix·ξh(|t|, ξ )R̂pq(ξ )dξ, p, q = 1, . . . , d, (t, x) ∈ R1+d, (1.5)16

where R̂pq(ξ ) is a density of R̂pq(·).17

We show in Proposition 2.1 that the function h is non-negative definite iff R(t, x) = [Rpq(t, x)] is non-negative definite.18

Therefore, the largest (in the sense of inclusion) set of functions h in (1.5) which can be examined is the class of non-negative19

definite functions.20

In this paper, we study a smaller family of functions, namely we assume that h is completely monotone in the sense of21

Bernstein, see (1.7).22

Let us denote by r̂ the power–energy spectrum. It is a scalar non-negative, integrable function given by formula23

r̂(ξ ) := trR̂(ξ ), ξ ∈ Rd, (1.6)24

where tr is the trace. Let r(dξ ) := r̂(ξ )dξ .25

The main result of the paper, see Theorem 2.1, is the CLT for the trajectory of a tracer moving in a field whose covariance26

matrices are given by (1.5), where the function h is completely monotone i.e.27

h ∈ C∞(0,+∞) ∩ C[0,+∞), (−1)nh(n)(t, ξ ) ≥ 0, t > 0, r a.e. ξ, n = 0, 1, . . .28

and satisfies (1.8). From the Bernstein Theorem (Lax, 2002 Theorem 3., p. 138) we know that29

h(t, ξ ) =

∫
+∞

0
e−λtµ(ξ, dλ), t ∈ [0,+∞), r a.e. ξ, (1.7)30

whereµ(ξ, ·) is a non-negative, finite Borel measure on [0,+∞) for r a.e. ξ . For example from Schilling et al. (0000), Lemma31

4.5, we know, that all completely monotone functions are non-negative definite. We assume that there exists λ0 > 0 such32

that33

supp µ(ξ, ·) ⊂ [λ0,+∞), r a.e. ξ . (1.8)34

Observe that this assumption implies (1.2). Note also that when µ(ξ, dλ) = δγ (ξ )(dλ), we recover the Markovian case, see35

(1.3). In this way we generalize results from Fannjiang and Komorowski (1999), Koralov (1999) and Carmona and Xu (1996).36

In Section 3.1 we show (see (3.7)) an example of a covariance matrix which is of the form (1.5) but not of the form (1.3).37

We prove Theorem 2.1 in Section 3 by embedding the field V (t, x) into a larger space where we add one dimension38

and one argument i.e. a space of d + 1 dimensional fields Ṽ (t, x, y). We define a field Ṽ (t, x, y) in such a way that the field39

(Ṽ (t, x, 0)) has the same distribution as the field (V (t, x), 0). The process Ṽ (t, ·, ·) has the Markov property in appropriate40

function space. This process also has the spectral gap property. At the end we use Theorem 12.13 from Komorowski et al.41

(2012).42

In Section 4 we show the proof of Proposition 2.1.43
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