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A B S T R A C T

The fatigue life of steel structures under operating conditions inevitably depends on various random factors.
Among the most influential factors are the characteristics of load cycles, such as stress means and amplitudes. A
knowledge of their probability distribution is thus crucial for fatigue life analysis and prediction. Finite prob-
abilistic mixture models have previously been used for this purpose. This paper presents a study of the possible
benefits of mixture models with log-normal components, using a large experimental data set from the slew
bearing substructure of a stacker. The study shows that for this particular situation, the log-normal mixture
model performs significantly better than Gaussian mixtures, and thus can be used as a suitable model in similar
areas of application.

1. Introduction

Rapid crack propagation in large-scale structures (most frequently
initiated by fatigue damage as a consequence of time-variable loading)
is highly dangerous [1–3]. In most cases, rapid cracking not only leads
to the disintegration of affected structural components; it also causes
irreversible accompanying damage to the entire structure [1,2,4]. An
essential area of research for engineering practice is the development of
methods enabling us to monitor structural states and track the course of
fatigue damage up to the end of a structure’s operating lifespan [4]. By
monitoring damage states, it is possible to manage the ageing of a
structure, which brings substantial economic benefits.

However, it is difficult to estimate the degree of structural damage
which leads to fracture instability. In most cases, it is not possible re-
liably to determine the distribution of damage throughout the entire
structure or structural component (or to trace the development of this
distribution over the course of time); one consequence of time-random
loading is thus the random occurrence of failure limit states. Predicting
the initiation of limit states in structures is an essential requirement for
increasing operational safety.

Because structures are subjected randomly to variable loading
during operations, the material fatigue characteristics (usually de-
termined for constant stress amplitude and for fixed load ratio

=R S S/min max expressed as a S-N curve) must be transformed, where
Smin is the minimum stress and Smax is the maximum stress. The most
frequently used hypothesis for estimating the lifespan of randomly

loaded structural components is Miner’s rule of cumulative damage
[5,6]
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where failure occurs when the damage D equals 1. The real value of the
critical damage has been found much lower, =D 0.5 [7]. In the case of
fluctuating mean stress conditions a further reduction down to a value
of =D 0.2 may be applied [8]. Leitner et al. [9] revealed that damage
sums between =D 1.0 and =D 0.5 are well applicable for a con-
servative fatigue assessment on the basis of the IIW-recommended fa-
tigue design curves.

In Eq. (1), N i[ ] is the real number of cycles at amplitude S i[ ] and
N i[ ]f is the number of cycles to failure at constant amplitude S i[ ].
Generally, the number of cycles to failure N i[ ]f (for any stress amplitude
S) can be formulated as a Wöhler curve [10,11]

= −N αS ,f
β (2)

where α and β are parameters characterizing the material fatigue be-
haviour for a constant load ratio R.

The construction of a new S-N curve for various loading spectra –
including the statistical uncertainty of parameters α and β in Eq. (2) –
gives a more precise evaluation of the limit state; moreover, it enables
us to distinguish between the degree of systematic error in the proposed
model and random errors of the loading spectrum. A quick and effective
tool for evaluating structural lifespan under variable stress amplitudes
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appears to be the approximation of the S–N curve and its reliability
band using a two-parameter Weibull function [12]. This solution en-
ables us to objectively estimate the S–N curve and its variance without
any other supplementary information – i.e. purely from the primary
data. However, the distribution of stress amplitudes at selected critical
structural nodes appears to be a key factor in the objective evaluation of
lifespan in randomly loaded structures.

In the majority of large-scale steel structures, random loading al-
ways occurs within a certain range of stress amplitudes. These stress
amplitudes at each node thus form a time series. Because the ampli-
tudes of stress cycles are influenced by a number of operational and
technological factors (often varying widely in character), the options
for modelling this series – and particularly the consequences in terms of
the reduction of the structure’s load capacity – are very restricted. An
example of modelling of factors influencing fatigue life can be found in
[13] where probabilistic models of passenger volumes in trains on a
railroad bridge are employed. For this reason, when dealing with real
operating conditions it is only in very exceptional cases that the prob-
ability density function (PDF) of loading amplitudes can be derived
theoretically; in most cases it must be estimated from experimental
data. Because the loading process can, in most cases, be considered
ergodic – and thus its statistical characteristics can be derived from
records of a sufficiently long sample of historical data – the relations
among the individual loading amplitudes can be discounted. However,
the PDF of the amplitudes will certainly be a multi-modal one, some-
times with several local extremes. This is due to the different operating
modes of the structure during its lifespan, which must be taken into
account when modelling the PDF. The statistical model of the loading
spectrum must be flexible enough to ensure that these variances are
taken into consideration.

Finite mixture models [14] are precisely the type of statistical model
that is suitable for the above-described conditions. Klemenc and Fajdiga
[15–17] evaluated the statistical distribution of loading amplitudes by
means of a mixture of multivariate Gaussian probability density func-
tions. Unknown parameters of a generated distribution were estimated
using the maximum likelihood method. This enables the rational ex-
trapolation of the mixture PDF to regions for which experimental data
are not available [15]. In order to increase the effectiveness of this
method, an optimization of the number of Gaussian probability density
functions in the mixture was proposed [16]. Later, it was demonstrated
that when modelling loading spectra it is often more suitable to use
Student’s t-PDFs instead of Gaussian PDFs. The application of t-PDFs in
the mixture is more general, and it produces a much better model of a
loading spectrum with high amplitudes [17]. Another application of
Gaussian mixtures for modelling of a loading spectrum can be found in
[18]. The same idea developing mixture models has been proposed by
Ye et al. [4] who formulated loading spectrum of a steel bridge by
combining a standard traffic and weather spectrum with a spectrum
obtained under typhoon conditions. More complex models of the
loading spectrum – e.g. models taking into account the random nature
of operating regimes in structural loading in relation to the estimation
of the time course of damage and remaining lifespan – require knowl-
edge obtained from larger data sets and sufficiently accurate estima-
tions of parameters.

If the parameters of a complex statistical model are estimated from a
small sample of data, even if the resulting fitted model describes the
data well, the model can perform poorly during future observations.
This effect is referred to as overfitting [19]. The risk of overfitting is
even more acute when the amplitudes of the load cycles are not in-
dependent. In such cases, the estimated model can be well fitted to a
time-local behaviour of the series, but it may poorly describe a long-
term behaviour. If a sufficiently long sample of historical data is
available, the parameters can be estimated relatively simply, e.g. using
the well-known EM algorithm [20] and standard model selection
techniques such as Akaike information criterion [21] or Bayesian in-
formation criterion [22]. Nevertheless, if no historical data are

available, or if the sample is not long enough, the accuracy of the es-
timates must be taken into account, which makes the problem more
complicated. Acquiring the data from operational processes can be a
time-consuming and economically demanding procedure. It is therefore
highly desirable to acquire as much information as possible from a
limited-size sample. The uncertainty about unknown parameters can be
systematically treated using the Bayesian approach [18,23].

Despite these undoubtedly positive results, current methods of
modelling the PDF of loading amplitudes do not enable us to take into
consideration those types of structural loading for which only a re-
stricted set of operational data are available while maintaining a suf-
ficiently accurate estimation of parameters, and for which there is also a
lack of precise data on the relative numbers of cycles that occur as
random variables in the loading spectrum. An adequate estimate of the
PDF is thus an essential prerequisite for a reliable prediction of the
fatigue life of the structure. This paper focuses on fatigue damage and
lifespan prediction in large steel structures under real operating con-
ditions. PDF of loading amplitudes is estimated using a mixture model
with the minimum number of components. The new statistical model is
applied in a selected case of a steel structure.

2. Mixture models of load cycle amplitudes

2.1. Damage as a random variable

Consider a situation in which the values of stress cycle amplitudes
…S S, , T1 are known. Miner’s hypothesis, given in Eq. (1), for damage

caused by T stress cycles, can equivalently be expressed in the form
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where N S( )f is the number of cycles to failure at a constant stress
amplitude S. The aim is to predict damage
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cumulated during the next M load cycles, or more generally to make
decisions related to damage DM . While damage DT is (at least theore-
tically) fully determined by Eq. (3), the future damage DM is a random
variable. In order to predict or make decisions related to DM , it is
therefore necessary to know the probability distribution of DM . For the
sake of simplicity, we assume that the operating conditions vary in such
a way that the amplitudes can be considered independent and identi-
cally distributed random variables with a probability density function
f S( ). In view of the expected ergodicity, this condition does not greatly
diminish the generality of the solution. The probability distribution of
DM is therefore fully determined by the probability density f S( ). In
practice, the probability density function f S( ) is unknown and must be
estimated from the observed amplitudes …S S, , T1 .

The uncertainty about DM is thus caused both by the randomness of
the future amplitudes …+ +S S, ,T T M1 and also by our incomplete
knowledge of the amplitude distribution, i.e. the use of an estimate of
density f S( ) instead of the unknown real probability density function.
When making decisions on DM , the randomness of future amplitudes
can be taken into consideration by applying standard tools from sta-
tistical decision-making theory [24].

In practice, the number of observed cycles T is usually much lower
than M. It can therefore be expected that incomplete knowledge of f S( )
will be a substantially greater source of uncertainty than the random-
ness of future amplitudes. The uncertainty about f S( ) may be reduced
by using suitable prior information – particularly information on the
type of amplitude probability distribution.
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