Weighted trapezoidal inequalities related to the area balance of a function with applications

M. Rostamian Delavar ${ }^{\text {a,*, }}$, S.S. Dragomir ${ }^{\mathrm{b}, \mathrm{c}}$
${ }^{\text {a }}$ Department of Mathematics, Faculty of Basic Sciences, University of Bojnord, PO Box 1339, Bojnord 94531, Iran
${ }^{\mathrm{b}}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428, Melbourne MC 8001, Australia
${ }^{\text {c }}$ DST-NRF Centre of Excellence in the Mathematical and Statistical Sciences, School of Computer Science and Applied Mathematics, University of the Witwatersrand, Johannesburg, Private Bag 3, Wits 2050, South Africa

A R T I C L E I N F O

MSC:
Primary 26D15
26A51 Secondary 52A01
Keywords:
h-convex function
Fejér inequality
Random variable
Trapezoid formula
Special means

Abstract

Some basic results in connection with the area balance function associated to a Lebesgue integrable function are obtained and then two new Fejér trapezoidal type inequalities are presented. Also some applications for random variable, trapezoidal formula and special means are given.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In 1906, Fejér [8] obtained the following integral inequalities known in the literature as Fejér inequality:

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(x) d x \leq \int_{a}^{b} f(x) g(x) d x \leq \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x \tag{1}
\end{equation*}
$$

where $f:[a, b] \rightarrow \mathbb{R}$ is convex and $g:[a, b] \rightarrow \mathbb{R}^{+}=[0,+\infty)$ is integrable and symmetric to $x=\frac{a+b}{2}(g(x)=g(a+b-x), \forall x \in$ $[a, b])$. For more inequalities in connection with (1), we refer the readers to [10-14] and references therein.

The Fejér trapezoidal type inequality means the estimation of the difference between the right and middle part of (1), which has been obtained in [3] by Hwang, as the following:

Theorem 1.1. Let $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be differentiable mapping on I°, where $a, b \in I$ with $a<b$, and let $g:[a, b] \rightarrow[0, \infty)$ be continuous positive mapping and symmetric to $\frac{a+b}{2}$. If the mapping $\left|f^{\prime}\right|$ is convex on $[a, b]$, then the following inequality holds:

$$
\begin{align*}
& \left|\frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x-\int_{a}^{b} f(x) g(x) d x\right| \tag{2}\\
& \quad \leq \frac{(b-a)}{4}\left[\left|f^{\prime}(a)\right|+\left|f^{\prime}(b)\right|\right] \int_{0}^{1} \int_{\frac{1+t}{2} a+\frac{1-t}{2} b}^{\frac{1-t}{2} a+\frac{1+t}{2} b} g(x) d x d t
\end{align*}
$$

[^0]

Fig. 1. Trapezoid type inequality.

We have chosen the name of Fejér trapezoidal type inequality for (2) because when $g \equiv 1$, it reduces to the following inequality (obtained in [6])

$$
\begin{equation*}
\left|\int_{a}^{b} f(x) d x-(b-a) \frac{f(a)+f(b)}{2}\right| \leq \frac{1}{8}(b-a)^{2}\left(\left|f^{\prime}(a)\right|+\left|f^{\prime}(b)\right|\right) \tag{3}
\end{equation*}
$$

which gives an estimation for the difference between the area of trapezoid $a b c d$ and the area under the graph of f as well (Fig. 1).

In 2006, the concept of h-convex functions related to the nonnegative real functions has been introduced in [15] by Varošanec. The class of h-convex functions is including a large class of nonnegative functions such as nonnegative convex functions, Godunova-Levin functions [9], s-convex functions in the second sense [2] and P-functions [7].
Definition 1.2. [15] Let $h:[0,1] \rightarrow \mathbb{R}^{+}$be a function such that $h \not \equiv 0$. We say that $f: I \rightarrow \mathbb{R}^{+}$is a h-convex function, if for all $x, y \in I, \lambda \in[0,1]$ we have

$$
\begin{equation*}
f(\lambda x+(1-\lambda) y) \leq h(\lambda) f(x)+h(1-\lambda) f(y) \tag{4}
\end{equation*}
$$

Obviously, if $h(t)=t$, then all non-negative convex functions belong to the class of h-convex functions. If we consider $h(t)=\frac{1}{t}, h(t)=t^{s}, s \in(0,1]$, and $h(t)=1$ in (4), respectively then we recapture the definitions Godunova-Levin functions, s-convex functions and P-functions, respectively. The Fejér inequality related to h-convex functions has been obtained in [1].

On the other hand, the area balance function associated to a Lebesgue integrable function has been introduced by Dragomir in $[4,5]$ with the following backgrounds: For a Lebesgue integrable function $f:[a, b] \rightarrow \mathbb{C}$ and a number $x \in(a$, b) there exists a question as how far the integral $\int_{x}^{b} f(t) d t$ is from the integral $\int_{a}^{x} f(t) d t$. If f is nonnegative and continuous on $[a, b]$, then the above question has the geometrical interpretation of comparing the area under the curve generated by f at the right of the point x with the area at the left of x. The point x is called a median point, if

$$
\int_{x}^{b} f(t) d t=\int_{a}^{x} f(t) d t
$$

Due to the above geometrical interpretation, the area balance function associated to a Lebesgue integrable function f : $[a, b] \rightarrow \mathbb{C}$ has been defined as

$$
A B_{f}(a, b, x):[a, b] \rightarrow \mathbb{C} ; \quad A B_{f}(a, b, x)=\frac{1}{2}\left[\int_{x}^{b} f(t) d t-\int_{a}^{x} f(t) d t\right]
$$

or equivalently for any $t \in[0,1]$ we have

$$
A B_{f}(0,1, t)=\frac{b-a}{2}\left[\int_{0}^{t} f(s a+(1-s) b) d s-\int_{t}^{1} f(s a+(1-s) b) d s\right]
$$

Utilizing the cumulative function notation $F:[a, b] \rightarrow \mathbb{C}$ given by

$$
F(x)=\int_{a}^{x} f(t) d t
$$

then we observe that

$$
A B_{f}(a, b, x)=\frac{1}{2} F(b)-F(x) ; x \in[a, b] .
$$

https://daneshyari.com/en/article/8966132

Download Persian Version:
https://daneshyari.com/article/8966132

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: m.rostamian@ub.ac.ir (M. Rostamian Delavar), sever.dragomir@vu.edu.au (S.S. Dragomir).

