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Some basic results in connection with the area balance function associated to a Lebesgue 

integrable function are obtained and then two new Fejér trapezoidal type inequalities are 

presented. Also some applications for random variable, trapezoidal formula and special 

means are given. 
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1. Introduction 

In 1906, Fejér [8] obtained the following integral inequalities known in the literature as Fejér inequality: 
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f (x ) g(x ) dx ≤ f (a ) + f (b) 
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where f : [ a, b] → R is convex and g : [ a, b] → R 

+ = [0 , + ∞ ) is integrable and symmetric to x = 

a + b 
2 

(
g(x ) = g(a + b − x ) , ∀ x ∈ 

[ a, b] 
)
. For more inequalities in connection with (1) , we refer the readers to [10–14] and references therein. 

The Fejér trapezoidal type inequality means the estimation of the difference between the right and middle part of (1) , 

which has been obtained in [3] by Hwang, as the following: 

Theorem 1.1. Let f : I ⊆ R → R be differentiable mapping on I °, where a , b ∈ I with a < b , and let g : [ a , b ] → [0, ∞ ) be continuous 

positive mapping and symmetric to a + b 
2 . If the mapping | f ′ | is convex on [ a , b ], then the following inequality holds: 
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Fig. 1. Trapezoid type inequality. 

We have chosen the name of Fejér trapezoidal type inequality for (2) because when g ≡ 1, it reduces to the following 

inequality (obtained in [6] ) ∣∣∣∣
∫ b 

a 

f (x ) dx − (b − a ) 
f (a ) + f (b) 

2 

∣∣∣∣ ≤ 1 

8 

(b − a ) 2 
(| f ′ (a ) | + | f ′ (b) | ), (3) 

which gives an estimation for the difference between the area of trapezoid abcd and the area under the graph of f as well 

( Fig. 1 ). 

In 2006, the concept of h -convex functions related to the nonnegative real functions has been introduced in [15] by 

Varošanec. The class of h -convex functions is including a large class of nonnegative functions such as nonnegative convex 

functions, Godunova–Levin functions [9] , s -convex functions in the second sense [2] and P -functions [7] . 

Definition 1.2. [15] Let h : [0 , 1] → R 

+ be a function such that h �≡ 0 . We say that f : I → R 

+ is a h -convex function, if for 

all x , y ∈ I , λ∈ [0, 1] we have 

f 
(
λx + (1 − λ) y 

)
≤ h (λ) f (x ) + h (1 − λ) f (y ) . (4) 

Obviously, if h (t) = t, then all non-negative convex functions belong to the class of h -convex functions. If we consider 

h (t) = 

1 
t , h (t) = t s , s ∈ (0 , 1] , and h (t) = 1 in (4) , respectively then we recapture the definitions Godunova–Levin functions, 

s -convex functions and P -functions, respectively. The Fejér inequality related to h -convex functions has been obtained in [1] . 

On the other hand, the area balance function associated to a Lebesgue integrable function has been introduced by 

Dragomir in [4,5] with the following backgrounds: For a Lebesgue integrable function f : [ a, b] → C and a number x ∈ ( a , 

b ) there exists a question as how far the integral 
∫ b 

x f (t ) dt is from the integral 
∫ x 

a f (t ) dt . If f is nonnegative and continuous 

on [ a , b ], then the above question has the geometrical interpretation of comparing the area under the curve generated by f 

at the right of the point x with the area at the left of x . The point x is called a median point , if ∫ b 

x 

f (t) dt = 

∫ x 

a 

f (t ) dt . 

Due to the above geometrical interpretation, the area balance function associated to a Lebesgue integrable function f : 

[ a, b] → C has been defined as 

AB f (a, b, x ) : [ a, b] → C ; AB f (a, b, x ) = 

1 
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, 

or equivalently for any t ∈ [0, 1] we have 

AB f (0 , 1 , t) = 

b − a 
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. 

Utilizing the cumulative function notation F : [ a, b] → C given by 

F (x ) = 

∫ x 

a 

f (t ) dt , 

then we observe that 

AB f (a, b, x ) = 

1 

2 

F (b) − F (x ) ; x ∈ [ a, b] . 
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