Contents lists available at ScienceDirect

## Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

## Weighted trapezoidal inequalities related to the area balance of a function with applications



<sup>a</sup> Department of Mathematics, Faculty of Basic Sciences, University of Bojnord, PO Box 1339, Bojnord 94531, Iran <sup>b</sup> Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne MC 8001, Australia <sup>c</sup> DST-NRF Centre of Excellence in the Mathematical and Statistical Sciences, School of Computer Science and Applied Mathematics, University of the Witwatersrand, Johannesburg, Private Bag 3, Wits 2050, South Africa

#### ARTICLE INFO

MSC: Primary 26D15 26A51 Secondary 52A01

Keywords: h-convex function Fejér inequality Random variable Trapezoid formula Special means

#### ABSTRACT

Some basic results in connection with the area balance function associated to a Lebesgue integrable function are obtained and then two new Fejér trapezoidal type inequalities are presented. Also some applications for random variable, trapezoidal formula and special means are given.

© 2018 Elsevier Inc. All rights reserved.

### 1. Introduction

In 1906, Fejér [8] obtained the following integral inequalities known in the literature as Fejér inequality:

$$f\left(\frac{a+b}{2}\right)\int_{a}^{b}g(x)dx \leq \int_{a}^{b}f(x)g(x)dx \leq \frac{f(a)+f(b)}{2}\int_{a}^{b}g(x)dx,$$
(1)

where  $f : [a, b] \to \mathbb{R}$  is convex and  $g : [a, b] \to \mathbb{R}^+ = [0, +\infty)$  is integrable and symmetric to  $x = \frac{a+b}{2}(g(x) = g(a+b-x), \forall x \in [a, b])$ . For more inequalities in connection with (1), we refer the readers to [10–14] and references therein.

The Fejér trapezoidal type inequality means the estimation of the difference between the right and middle part of (1), which has been obtained in [3] by Hwang, as the following:

**Theorem 1.1.** Let  $f : I \subseteq \mathbb{R} \to \mathbb{R}$  be differentiable mapping on  $I^\circ$ , where  $a, b \in I$  with a < b, and let  $g: [a, b] \to [0, \infty)$  be continuous positive mapping and symmetric to  $\frac{a+b}{2}$ . If the mapping |f'| is convex on [a, b], then the following inequality holds:

$$\left|\frac{f(a) + f(b)}{2} \int_{a}^{b} g(x) dx - \int_{a}^{b} f(x) g(x) dx\right|$$

$$\leq \frac{(b-a)}{4} \left[ \left| f'(a) \right| + \left| f'(b) \right| \right] \int_{0}^{1} \int_{\frac{1+t}{2}a + \frac{1+t}{2}b}^{\frac{1-t}{2}a + \frac{1+t}{2}b} g(x) dx dt.$$
(2)

\* Corresponding author.

https://doi.org/10.1016/j.amc.2018.08.024 0096-3003/© 2018 Elsevier Inc. All rights reserved.





APPLIED MATHEMATICS AND COMPUTATION

E-mail addresses: m.rostamian@ub.ac.ir (M. Rostamian Delavar), sever.dragomir@vu.edu.au (S.S. Dragomir).



Fig. 1. Trapezoid type inequality.

We have chosen the name of Fejér trapezoidal type inequality for (2) because when  $g \equiv 1$ , it reduces to the following inequality (obtained in [6])

$$\left| \int_{a}^{b} f(x)dx - (b-a)\frac{f(a) + f(b)}{2} \right| \le \frac{1}{8}(b-a)^{2} \left( |f'(a)| + |f'(b)| \right), \tag{3}$$

which gives an estimation for the difference between the area of trapezoid *abcd* and the area under the graph of f as well (Fig. 1).

In 2006, the concept of *h*-convex functions related to the nonnegative real functions has been introduced in [15] by Varošanec. The class of *h*-convex functions is including a large class of nonnegative functions such as nonnegative convex functions, Godunova–Levin functions [9], *s*-convex functions in the second sense [2] and *P*-functions [7].

**Definition 1.2.** [15] Let  $h : [0, 1] \to \mathbb{R}^+$  be a function such that  $h \neq 0$ . We say that  $f : I \to \mathbb{R}^+$  is a *h*-convex function, if for all  $x, y \in I$ ,  $\lambda \in [0, 1]$  we have

$$f(\lambda x + (1 - \lambda)y) \le h(\lambda)f(x) + h(1 - \lambda)f(y).$$
(4)

Obviously, if h(t) = t, then all non-negative convex functions belong to the class of *h*-convex functions. If we consider  $h(t) = \frac{1}{t}$ ,  $h(t) = t^s$ ,  $s \in (0, 1]$ , and h(t) = 1 in (4), respectively then we recapture the definitions Godunova–Levin functions, *s*-convex functions and *P*-functions, respectively. The Fejér inequality related to *h*-convex functions has been obtained in [1].

On the other hand, the *area balance function* associated to a Lebesgue integrable function has been introduced by Dragomir in [4,5] with the following backgrounds: For a Lebesgue integrable function  $f : [a, b] \to \mathbb{C}$  and a number  $x \in (a, b)$  there exists a question as how far the integral  $\int_x^b f(t)dt$  is from the integral  $\int_a^x f(t)dt$ . If f is nonnegative and continuous on [a, b], then the above question has the geometrical interpretation of comparing the area under the curve generated by f at the right of the point x with the area at the left of x. The point x is called a *median point*, if

$$\int_{x}^{b} f(t)dt = \int_{a}^{x} f(t)dt.$$

Due to the above geometrical interpretation, the area balance function associated to a Lebesgue integrable function  $f : [a, b] \to \mathbb{C}$  has been defined as

$$AB_f(a, b, x) : [a, b] \to \mathbb{C}; \quad AB_f(a, b, x) = \frac{1}{2} \left[ \int_x^b f(t) dt - \int_a^x f(t) dt \right]$$

or equivalently for any  $t \in [0, 1]$  we have

$$AB_f(0,1,t) = \frac{b-a}{2} \bigg[ \int_0^t f(sa + (1-s)b) ds - \int_t^1 f(sa + (1-s)b) ds \bigg]$$

Utilizing the *cumulative function* notation  $F : [a, b] \rightarrow \mathbb{C}$  given by

$$F(x) = \int_{a}^{x} f(t)dt,$$

then we observe that

$$AB_f(a, b, x) = \frac{1}{2}F(b) - F(x); \ x \in [a, b].$$

Download English Version:

# https://daneshyari.com/en/article/8966132

Download Persian Version:

https://daneshyari.com/article/8966132

Daneshyari.com