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1. Introduction

In 1906, Fejér [8] obtained the following integral inequalities known in the literature as Fejér inequality:
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where f :[a,b] — R is convex and g : [a, b] - R = [0, +00) is integrable and symmetric to x = aT“’(g(x) =gla+b-Xx),Vxe
[a, b]). For more inequalities in connection with (1), we refer the readers to [10-14] and references therein.

The Fejér trapezoidal type inequality means the estimation of the difference between the right and middle part of (1),
which has been obtained in [3] by Hwang, as the following:

Theorem 1.1. Let f : I € R — R be differentiable mapping on I°, where a, b el with a <b, and let g: [a, b] — [0, oo) be continuous
positive mapping and symmetric to ”T”’. If the mapping |f| is convex on [a, b], then the following inequality holds:
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Fig. 1. Trapezoid type inequality.

We have chosen the name of Fejér trapezoidal type inequality for (2) because when g=1, it reduces to the following
inequality (obtained in [6])
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which gives an estimation for the difference between the area of trapezoid abcd and the area under the graph of f as well
(Fig. 1).

In 2006, the concept of h-convex functions related to the nonnegative real functions has been introduced in [15] by
VaroSanec. The class of h-convex functions is including a large class of nonnegative functions such as nonnegative convex
functions, Godunova-Levin functions [9], s-convex functions in the second sense [2] and P-functions [7].

Definition 1.2. [15] Let h: [0, 1] — R* be a function such that h #£ 0. We say that f: I — R* is a h-convex function, if for
all x, yel, A [0, 1] we have

fOx+ QA =2)y) <hG)f@) +h(1 =) ). (4)

Obviously, if h(t) =t, then all non-negative convex functions belong to the class of h-convex functions. If we consider
h(t) = % ,h(t) =t5,s € (0,1], and h(t) =1 in (4), respectively then we recapture the definitions Godunova-Levin functions,
s-convex functions and P-functions, respectively. The Fejér inequality related to h-convex functions has been obtained in [1].

On the other hand, the area balance function associated to a Lebesgue integrable function has been introduced by
Dragomir in [4,5] with the following backgrounds: For a Lebesgue integrable function f:[a,b] — C and a number x e (a,
b) there exists a question as how far the integral fxbf(t)clt is from the integral f; f(t)dt. If f is nonnegative and continuous
on [a, b], then the above question has the geometrical interpretation of comparing the area under the curve generated by f
at the right of the point x with the area at the left of x. The point x is called a median point, if

/be(t)dt - /axf(t)dt.

Due to the above geometrical interpretation, the area balance function associated to a Lebesgue integrable function f :
|a, b] — C has been defined as

AB(a.b.x):[a.b] - C; ABy(a.b.x) = %[/bf(t)dtffxf(t)dt],

or equivalently for any te[0, 1] we have

AB£(0.1.t) = ?[/Ot f(sa+ (1 —s)b)ds - /1 flsa+(1- s)b)ds].
t

Utilizing the cumulative function notation F : [a, b] — C given by
X
Fo = [ o,
a
then we observe that

ABs(a, b, x) = %F(b) —F(); xe|a,b].
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