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We propose a new analytical perspective to explain the behavior of the number of seismic 

events observed post an intense earthquake as time elapses, through the application of 

a fractional solution of the reactive equation. According to the results obtained, a double 

power law model shows the number density decay in several possible ways, among which 

is a particular case the modified version of Omori Law proposed by Utsu in 1961. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

The understanding of the behavior of the temporal frequency of a number of seismic events observed after an intense 

earthquake and its decay has been a question that has been explained by the work of F. Omori entitled ”On the aftershocks 

of earthquakes ” published in 1894 [11] , and subsequently re-formulated in [13] . The last of these authors presented a form 

that shows the frequency of aftershocks per unit time interval n ( t ) at time t , given by: 

n (t) = 

k 

(C + t) p 
(1) 

with k > 0, C > 0 and p > 0. The parameter p controls the rate of decay of aftershocks over time, and has been found in [5] to 

have a value around 1.0. The parameter k corresponds to the productivity of the aftershocks, and the value of C is a time 

shift constant that relates to the aftershock rate in the early phase of the sequence of events, and the determination of its 

value has been the focus of several studies, as in [3,4] and [6] , where in the latter, by evaluating the efficiency of various 

models in decribing the time decay of aftershock rate, the authors demonstrated that the modified Omori Model with C 

kept fixed to zero represents the better choise for the modeling and forecasting of simple sequence behavior in California 

and Italy. In theses cases they affirm that the parameter C in the Omori equation, does not represent a general feature of 

the aftershock rate decay. They pointed out it is mainly an artifice induced by catalog incompleteness in the first times after 

the main shock. But the Utsu-Omori form has also been questioned, and other forms have been proposed more recently. 

In [10] pointed out that all aftershock sequences defined by three declustering techniques in California and Taiwan, are 

best described by a stretched exponential than by a power law. They say that a stretched exponential function describes 

most relaxation data observed in Nature, so it is considered an universal property of relaxing systems, and compared to the 

pure exponential decay, it indicates that the decay rate is not constant but decreases with time as t β−1 and its behavior is 

sensitive to the method from which aftershocks are defined. 
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On the other hand, from the theoretical perspective Omori type-law has been treated to a lesser extent (e.g. [1] , [12] ), so 

that to support in this line, we present an application of the reactive equation from the perspective of fractional calculus, 

which constitute a powerfull framework that has already been applied by some authors to the study of earthquakes (see 

[26] to find other applications). In [7] have been applied fractional derivatives to seismic analysis of base-isolated models, 

showing that the fractional derivative model is superior to the conventional model in predicting the peak response for an 

earthquake simulated test. Also, in [2] , by considering earthquakes as complex systems showed that fractional model is very 

efficient for earthquake modeling. In [15] was performed a Multi Dimensional Scaling (MDS) analysis to understand the 

global behaviour of earthquakes, and so visualize the similarities among Earth’s seismic regions. In this way, MDS turned 

out to be a useful visual representation of the complex relationships present among seismic events, which are not perceived 

on traditional maps. 

2. The model 

2.1. Construction 

A problem concerning reacting particles has been treated several times by Mathai A.M. and Haubold H.J. (see, for exam- 

ple, [9] ), where for the ith particle the evolution of the time dependent number density N i ( t ) is written as 

dN i (t) 

dt 
= −c N i (t) , (2) 

with c > 0 and N i (t = 0) = N 

(i ) 
0 

. Given the situation where some produced particles are destroyed, we have that the c coeffi- 

cient represents the corresponding residual rate of change. About that, we are interested in the case when the destruction 

rate dominates. 

In this stage, we propose to relate N i ( t ) with the number density of seismic events, independent of their magnitude, 

observed after an earthquake in a certain geographic region, with rate of decrease given by c . Now, we will shape our 

seismic decay model from N i ( t ) through expression (2) . 

Just as can be seen in the references mentioned at the beginning of this section, a fractional integration is performing 

instead of the full integral, which will allow us to address non-exponential properties of decay process. Hence, dropping i , 

we have 

N(t) − N 0 = −c ν 0 D 

−ν
t N(t) , (3) 

with ν > 0 the fractional order of the integral applied and the constant N 0 is the initial condition for the number density on 

t = 0 . There c was replaced by c ν for physical reasons. 

0 D 

−ν
t is the fractional integral operator of Riemann–Liouville, which in general is given by 

a D 

−ν
t f (t) = 

1 

�(ν) 

∫ t 

a 

(t − u ) ν−1 f (u ) du. (4) 

It represents a generalization for noninteger order of the Cauchy’s formula, which is an iterated integral that may be ex- 

pressed as a weighted single integral with a weight function (it can be seen in [21] ). Applying the Laplace transform in (3) , 

using the property 

L 

[
0 
D 

−ν
t N(t) 

]
(s ) = s −νN(s ) (5) 

it is possible to obtain that (we stress that the details can be seen in the aforementioned references) 

N(t) = N 0 

∞ ∑ 

j=0 

(−1) j [(ct) ν ] j 

�(1 + jν) 
, (6) 

which can be written as 

N(t) = N 0 E ν (−c νt ν ) . (7) 

This is a solution for N ( t ) in terms of the Mittag–Leffler function , whose general form E 
γ
αβ

(z) was defined by [24] : 

E 
γ
α,β

(z) = 

∞ ∑ 

j=0 

(γ ) j z 
j 

j !�(β + α j ) 
(8) 

where for the real part the parameters β > 0, α > 0 and γ � = 0, where we have (γ ) j = γ (γ + 1) · · · (γ + j − 1) and (γ ) 0 = 1 . 

So, (7) contains its original form introduced in [25] , wich is obtained with γ = 1 and β = 1 . 

The Mittag–Leffler function arises naturally in the solution of fractional order integral equations or fractional order dif- 

ferential equations, providing deviations from the exponential behavior of the observed physical phenomena. This fact, and 

other interesting properties, have generated a great interest of physicists in recent years. Evidence of this and its analytical 

importance can be seen in [14] . 
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