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This study is concerned with the model reference tracking control problem for spatially 

interconnected systems (SISs) with interconnected chains in discrete-time case. The aim of 

this paper is to design a state-feedback controller such that the state of the controlled sys- 

tem tracks precisely a given stable reference signal or the output of the controlled system 

tracks the output of a given reference model well. First, two sufficient conditions are given 

to guarantee that the closed-loop system is asymptotically stable and the corresponding 

tracking performance requirement is satisfied, respectively. Next, the existence of the de- 

sired state-feedback controllers are obtained by the proposed methods based on linear 

matrix inequalities. Finally, a first-order partial differential equation simulation example is 

provided to illustrate the effectiveness of the derived methods. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

Recently, research on control theory of linear and nonlinear systems develops rapidly [1–8] . In this paper, spatially in- 

terconnected systems (SISs) with interconnected chains in discrete-time case are considered. SISs consist of similar subsys- 

tems which interact with their closest neighbors [9,10] . During the last few decades, SISs have broad applications in power 

systems, automated highways systems [11,12] , airplane formation flight [13] , satellite formations [14,15] , cross-directional 

control in paper processing [16] , partial differential equation, and other areas [17–19] . 

Since the complicated behaviors and wide applications, SISs have been studied by many scholars in recent years. The 

basic conceptions of SISs and the temporal and spatial forward operators for SISs are introduced in [9,10] . Meanwhile, the 

analysis, synthesis, and implementation of distributed controllers for SISs are successfully tackled. There are other results on 

multidimensional filters for SISs [20] , iterative learning control for SISs [21] , spatially invariant distributed dynamical systems 

[22] , the systems interconnected over an arbitrary graph [23] , SISs with time delay [24–26] , a scaled small gain theorem 

for SISs [27] , SISs with structured uncertainties [26,28–31] , etc.. Specially, SISs with interconnected chains are investigated 

in [18,19,32] . The close formation flight is modeled as SISs with interconnected chains and the corresponding distributed 

control design problem is solved in [18] . The distributed parameter dependent controller is proposed for parameter varying 

SISs with interconnected chains in [19] . The reference [32] presents a 2-D hybrid Roessor model for SISs with interconnected 

chains in one spatial dimension and develops the corresponding Kalman-Yakubivich-Popov lemma for derived model. 

� This work was supported in part by the National Natural Science Foundation of China (Nos. 61673218 and 61573007 ). 
∗ Corresponding author. 

E-mail address: xuhuiling@njust.edu.cn (H. Xu). 

https://doi.org/10.1016/j.amc.2018.08.028 

0 096-30 03/© 2018 Elsevier Inc. All rights reserved. 

https://doi.org/10.1016/j.amc.2018.08.028
http://www.ScienceDirect.com
http://www.elsevier.com/locate/amc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2018.08.028&domain=pdf
https://doi.org/10.13039/501100001809
mailto:xuhuiling@njust.edu.cn
https://doi.org/10.1016/j.amc.2018.08.028


H. Feng et al. / Applied Mathematics and Computation 340 (2019) 50–62 51 

State/output tracking is an important issue for system and control theory, since its wide applications in robot control, 

flight control and other practical fields [33–35] . The objective of state tracking control problem is to design a state-feedback 

controller such that the state of the controlled system follows a given stable reference signal well. The goal of output track- 

ing control problem is to design a state-feedback controller such that the output of the controlled plant tracks the out- 

put of a given reference signal as close as possible. Over the last two decades, many scholars have been concentrated on 

state/output tracking control design, and many methods have been introduced to solve this control problem [36–47] . It is 

worth to be pointed that model reference tracking control design is more general and more difficult than the stabilization 

problem, since model reference control design requires that the controlled system not only to be stabilized, but also to meet 

a specified tracking performance [35,4 8,4 9] . Thus, the model reference tracking problem for SISs with interconnected chains 

is a significant problem. To the best of authors’ knowledge, this problem has not been investigated yet, which motivates our 

study. 

In this paper, we focus on the problem of model reference tracking control for SISs with interconnected chains in 

discrete-time case. First, two sufficient conditions are derived to guarantee the asymptotic stability and the tracking per- 

formance of the closed-loop systems. Then, the most important contribution of this paper is the design of expected state- 

feedback controllers which achieve the specified tracking performance. Thus, the model reference tracking problem for com- 

plicated SISs with interconnected chains can be successfully solved by applying designed state-feedback controllers. 

The paper is organized as follows. The preliminaries and state tracking control design are given in Section 2 . The output 

tracking control design is presented in Section 3 . A first-order partial differential equation example is demonstrated in 

Section 4 . Conclusions are given in Section 5 . 

Notations: The set of integers is denoted as Z . The set of nonnegative integers is denoted as Z 

+ . The set of real numbers 

is denoted as R . The notation x ∈ R 

• is used to denote real valued, finite vectors whose size is either clear from context 

or not relevant to the discussion. R 

n ×m denotes the space of n by m matrices; R 

n ×n 
S 

denotes the space of symmetric n 

by n matrices. I denotes the identity matrix when the dimension is clear from the text. Given real symmetric matrix M , 

M > 0( ≥ 0) denotes property v ∗Mv > 0(≥ 0) for all v � = 0 . The notation ( x 1 , x 2 ) is used to denote the vector with two (not 

necessarily scalar) components. ‖ · ‖ 2 denotes the Euclidean norm on vectors and the corresponding inner product is defined 

as 〈 x (k, s ) , y (k, s ) 〉 2 = x ∗(k, s ) y (k, s ) . 

2. State tracking control design 

2.1. Problem formulation and preliminaries 

In this paper, signals are denoted by L + 1 independent variables: x = x (k, s 1 , . . . , s L ) , where the temporal variable and 

the spatial variables are denoted by k ∈ Z 

+ and s = (s 1 , s 2 , . . . , s L ) , s i ∈ Z, respectively. The temporal and spatial variables of 

a signal can be clearly separated when the signals are considered at a fixed time k , which motivates the following definition. 

Definition 1. [9,10] The space � 2 is the set of functions mapping Z × · · · × Z to R 

• for which the following quantity is 

finite: ∑ 

s 1 ∈Z 
· · ·

∑ 

s L ∈Z 
x ∗(s ) x (s ) < ∞ . 

The inner product on � 2 is defined as 

〈 x, y 〉 � 2 := 

∑ 

s 1 ∈Z 
· · ·

∑ 

s L ∈Z 
x ∗(s ) y (s ) , 

with corresponding norm ‖ x ‖ � 2 := 

√ 〈 x, x 〉 � 2 . 
Note that, for given k and s , u ( k , s ) denotes a real-valued vector and u ( k ) denotes an element of � 2 . 

In this section, we consider the following SISs with interconnected chains in discrete-time case: 

[
(T x )(k, s ) 
w (k, s ) 

]
= 

[
A T T A T S B T u B T d 

A ST A SS B Su B Sd 

]⎡ 

⎢ ⎣ 

x (k, s ) 
v (k, s ) 
u (k, s ) 
d(k, s ) 

⎤ 

⎥ ⎦ 

, (1) 

w (k, s ) = (�S,m 

v (k ))(s ) , 

with the initial state 

x (0 , s ) = x 0 (s ) , v (k, 0) = 0 , 

where x (k, s ) ∈ R 

m 0 is the state variable, u (k, s ) ∈ R 

n u is the control signal, d(k, s ) ∈ R 

n d is the exogenous disturbance. For 

a given m = ( m 0 , m 1 , m 2 , . . . , m L ) , the structured operator �S , m 

is defined as: 

�S,m 

:= diag(S 1 I m 1 
, S 2 I m 2 

, . . . , S L I m L 
) , 
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