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We give two conditions that are necessary and sufficient for the uniqueness of Filippov 
solutions to scalar, autonomous ordinary differential equations with discontinuous velocity 
fields. When only one of the two conditions is satisfied, we give a natural selection 
criterion that guarantees uniqueness of the solution.
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r é s u m é

Nous donnons deux conditions nécessaires et suffisantes pour l’unicité des solutions de 
Filippov des équations différentielles ordinaires autonomes scalaires, avec champs de 
vitesse discontinus. Lorsqu’une seule de ces deux conditions est satisfaite, nous donnons 
un critère naturel sélectionnant une unique solution.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and statement of the theorem

The purpose of this paper is to derive necessary and sufficient conditions for the uniqueness of Filippov solutions to the 
scalar, autonomous ordinary differential equation (ODE)

dX

dt
(t) = b(X(t)) for t > 0

X(0) = x0

(1)

where b : R → R is Borel measurable and locally bounded, and x0 ∈ R. If b is continuous then the sense in which (1)
holds is classical: X : [0, ∞) → R is absolutely continuous and d

dt X(t) = b(X(t)) holds for almost every t > 0. It was shown 
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by Binding [3] that the solution is unique if and only if b satisfies the so-called Osgood condition at all zeroes of b (see 
below). For instance, any Lipschitz continuous b satisfies Osgood’s condition. For a general reference on the uniqueness and 
non-uniqueness of ODEs, see [1].

If b is merely measurable, say, b ∈ L∞(R), then the interpretation of (1) is more subtle, and choosing a different repre-
sentative in the equivalence class of b can lead to very different solutions. For instance, redefining the constant velocity field 
b(x) ≡ 1 at a single point, b(x0) = 0, yields both the solutions X(t) ≡ x0 and X(t) = x0 + t . Several authors have analyzed 
possible modifications of b on negligible sets in order to ensure the existence of a classical solution, see, e.g., [7,4] and 
the references therein. The concept of Filippov flows or Filippov solutions to (1) provides an alternative solution to this issue 
by choosing a canonical representation of the velocity field. More precisely, the differential equation (1) is replaced by a 
differential inclusion where the right-hand side contains information on the behavior of b in an infinitesimal neighborhood 
of X(t). Filippov [6] showed that there exists a Filippov solution to (1) under very mild conditions on b, for instance if 
b ∈ L∞(R) or, for local existence, b ∈ L∞

loc(R).
In Section 1.1, we provide the definition of Filippov solutions and, in Section 1.2, we describe the essential Osgood 

criterion. The main theorem of this paper, stated in Section 1.3, gives necessary and sufficient conditions for the uniqueness 
of Filippov solutions to (1). As a corollary, we define a class of functions b̃ : R → R, for which the corresponding ODE all 
have the same unique, classical solution. Section 2 contains the proof of the Theorem and its Corollary, while Section 3 lists 
some examples.

1.1. Set-valued functions and Filippov solutions

We say that an absolutely continuous function X : [0, T ) → R is a Filippov solution to (1) if X(0) = x0 and

dX

dt
(t) ∈ K [b](X(t)) for a.e. t ∈ (0, T )

(see [6]). Here, the set-valued function K [b] is defined as

K [b](x) :=
⋂
δ>0

⋂
N⊂R|N|=0

conv
(
b
(

Bδ(x) \ N
))

where Bδ(x) is the open ball around x with radius δ, and conv(A) is the smallest closed, convex set containing A. The 
intersection is taken over all Lebesgue measurable sets N ⊂R with one-dimensional Lebesgue measure |N| = 0. In a similar 
vein we define the essential upper and lower bounds of b at x as

m[b](x) := min
(

K [b](x)
) = lim

δ→0
ess inf
x′∈Bδ(x)

b(x′),

M[b](x) := max
(

K [b](x)
) = lim

δ→0
ess sup
x′∈Bδ(x)

b(x′).
(2)

We will say that b is continuous at a point x if the set K [b](x) contains a single point, otherwise we say that b is discontin-
uous at x. It is evident that this coincides with the usual definition of continuity at a point, possibly after redefining b on a 
negligible set.

We list below some properties that are straightforward to check (see also [2,5]):

(i) K [b] is upper hemicontinuous;
(ii) if 0 /∈ K [b](x) for some x ∈R then there is a neighborhood U of x such that 0 /∈ K [b](y) for every y ∈ U ;

(iii) m[b] and M[b] are lower and upper semi-continuous, respectively;
(iv) the set of discontinuities of b coincides with the measurable set {x : m[b](x) < M[b](x)}.

1.2. The Osgood condition

The classical uniqueness result for ODEs requires Lipschitz continuity of the velocity field b. In 1898, Osgood relaxed 
this condition to mere continuity of b, along with an integrability condition on its reciprocal [8]. We recall the main idea 
of Osgood’s condition here. We will call a function g : (−δ0, δ0) → [0, ∞) an Osgood function if it is nonnegative, Borel 
measurable, and satisfies:

0∫
−δ

g(z)−1dz = +∞,

δ∫
0

g(z)−1dz = +∞ ∀ δ ∈ (0, δ0). (3)

Lemma 1 (Osgood lemma). Let g : (−δ0, δ0) → [0, ∞) be an Osgood function and let u : [0, T ) → (−δ0, δ0) be an absolutely contin-
uous function satisfying u(0) = 0 and
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