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a b s t r a c t

Children’s number-line estimation has produced a lively debate about representational change, sup-
ported by apparently incompatible data regarding descriptive adequacy of logarithmic (Opfer, Siegler,
& Young, 2011) and cyclic power models (Slusser, Santiago, & Barth, 2013). To test whether methodolog-
ical differences might explain discrepant findings, we created a fully crossed 2 � 2 design and assigned 96
children to one of four cells. In the design, we crossed anchoring (free, anchored) and sampling (over-,
even-), which were candidate factors to explain discrepant findings. In three conditions (free/over-
sampling, free/even-sampling, and anchored/over-sampling), the majority of children provided estimates
better fit by the logarithmic than cyclic power function. In the last condition (anchored/even-sampling),
the reverse was found. Results suggest that logarithmically-compressed numerical estimates do not
depend on sampling, that the fit of cyclic power functions to children’s estimates is likely an effect of
anchors, and that a mixed log/linear model provides a useful model for both free and anchored numerical
estimation.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we attempt to reconcile seemingly incompatible
data (Barth & Paladino, 2011; Opfer & Siegler, 2007; Opfer,
Siegler, & Young, 2011; Slusser, Santiago, & Barth, 2013) regarding
the psychophysical functions that link numbers to children’s esti-
mates of numerical magnitude.

The psychophysical functions that link numbers to subjects’
estimates of numerical magnitude are both theoretically and prac-
tically important. Of theoretical interest, functions generating
young children’s numerical magnitude estimates have been
observed in non-symbolic number discrimination of a wide range
of species (for review, see Nieder & Dehaene, 2009), to change
abruptly with limited experience (Izard & Dehaene, 2008; Opfer
& Siegler, 2007), and to closely track abilities to deal with numbers
in other contexts (Booth & Siegler, 2006; Thompson & Siegler,
2010). Thus, just as animals can better discriminate 1 and 10
objects than 101 and 110 objects, so too do children estimate mag-
nitudes of symbols 1 and 10 to differ more than 101 and 110. These
results suggest that (1) across development, numerical symbols are
linked to an innate ‘‘mental number line” that allows infants and

other animals to discriminate numbers and match them across
modalities (see Fig. 1) and (2) linking between symbolic numbers
and mental magnitudes is plastic and undergoes significant change
(Opfer & Siegler, 2012).

Psychophysical functions linking numbers and estimates of
numerical value have also emerged as practically important.
Specifically, functions generating children’s numerical estimates
correlate highly with real-world behavior, including children’s
memory for numbers, ability to learn arithmetic facts, math grades
in school, and math achievement scores (Booth & Siegler, 2006,
2008; Fazio, Bailey, Thompson, & Siegler, 2014; Siegler &
Thompson, 2014; Siegler, Thompson, & Schneider, 2011). These
findings suggest that children’s representations of numerical mag-
nitude play an important role in development of mathematical
ability and should be a target for educational interventions.

What psychophysical functions are most likely to generate esti-
mates of numerical value? Across a wide range of tasks and age
groups (for review, see Opfer & Siegler, 2012), we have observed
two functions as being most likely contenders: the logarithmic
function given by Fechner’s Law and a standard linear function
(see Appendix A)3. For example, on number-line estimation tasks,
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children are shown a blank line flanked by two numbers (e.g., 0 and
1000) and asked to estimate the position of a third number. Because
line length itself is not psychophysically compressive or expansive
(Lu & Dosher, 2013), the task provides a relatively straightforward
method for assessing compression in numerical magnitude
representations.

In many number-line estimation studies, a logarithmic-to-
linear shift has been observed. For example, on a 0–1000 task, sec-
ond graders’ median estimates were best fit by a logarithmic func-
tion, whereas sixth graders’ and adults’ median estimates were
best fit by the linear function; similarly, over 90% of individual sec-
ond graders’ estimates were better fit by the logarithmic than lin-
ear function, whereas the reverse was true of sixth graders and
adults (Siegler & Opfer, 2003). This developmental sequence has
been observed at different ages with different numerical ranges.
It occurs between preschool and kindergarten for the 0–10 range,
between kindergarten and second grade for the 0–100 range,
between second and fourth grade for the 0–1000 range, and
between third and sixth grade for the 0–100,000 range
(Berteletti, Lucangeli, Piazza, Dehaene, & Zorzi, 2010; Opfer &
Siegler, 2007; Siegler & Booth, 2004; Thompson & Opfer, 2010).
Similar transitions occur roughly a year later for children with
mathematical learning difficulties (Geary, Hoard, Byrd-Craven,
Nugent, & Numtee, 2007). Timing of the changes corresponds to
periods when children are gaining extensive exposure to numerical
ranges: through counting during preschool for numbers up to 10,
through addition and subtraction between kindergarten and sec-
ond grade for numbers through 100, and through all four arith-
metic operations in later elementary school.

Against the idea of a logarithmic-to-linear shift, however, Barth
and colleagues (Barth & Paladino, 2011; Slusser et al., 2013) have
recently presented evidence that estimates of numerical value
may follow cyclic power functions rather than being truly Fechne-
rian logarithmic functions or arithmetically correct linear func-
tions. For example, on a 0–100 number line task, estimates of 7-
year-olds were found to follow a 2-cycle power function originally
described by Hollands and Dyre (2000). Indeed, fit of the 2-cycle
power function was strongest for 7-year-olds’ (R2 = .968) and 8-
year-olds’ (R2 = .995) estimates on the 0–1000 number line task,

which we examine in our present study. Further, rather than
observing an abrupt, single-trial increase in linearity (as reported
in Opfer & Siegler, 2007), Barth and colleagues observed a gradual,
age-related increase in value of the exponent of the power func-
tion. If true, these quantitative findings are theoretically important.
First, they suggest that commonalities between estimates of sym-
bolic and non-symbolic magnitude may be illusory, with estimates
of symbolic magnitude being affected by children’s prior knowl-
edge of proportions (e.g., 500 is half of 1000). Second, they suggest
that changes in numerical magnitude estimates are quantitative (in
the sense that one parameter in the same function changes over
time) rather than qualitative (in the sense that different functions
are needed to describe younger versus older children’s estimates).

1.1. Why different functions? Sampling versus anchoring

To illustrate differences between data cited in support of the
logarithmic-to-linear shift account and the proportion-judgment
account, it is useful to compare 7- and 8-year-olds’ number-line
estimates on the 0–1000 task (Fig. 2), where Slusser et al. (2013)
found a better fit for the 2-cycle power function over the logarith-
mic, despite the logarithmic function providing a better fit in data
collected by Opfer and Siegler (2007). Given that children’s ages
and numeric ranges were the same, something must explain these
discrepant findings.

One potential cause of the discrepancy is methodological differ-
ences in sampling (Barth, Slusser, Cohen, & Paladino, 2011; Slusser
et al., 2013), with fit of the logarithmic function being an artifact of
sparsely sampling at the upper ranges (e.g., obtaining few esti-
mates for numbers 750–1000) and heavily sampling at lower
ranges (e.g., obtaining many estimates for numbers 0–250). As
Slusser et al. (2013) write, ‘‘there is a resounding tendency for
researchers to sample heavily from the lower end of the number
line and scarcely from the upper end. . .. This practice focuses on
participants’ propensity to overestimate small numbers, but yields
little data to reveal the details of underestimation patterns for lar-
ger numbers” (p. 4). This observation has potential force. As can be
seen in Fig. 2, Opfer and Siegler (2007) collected estimates for 13
numbers in the 0–250 range and 3 numbers in the 750–1000
range, whereas Slusser et al. (2013) collected estimates for 7 num-
bers in each range.

Another potential cause of the discrepancy is methodological
differences in anchoring (Opfer et al., 2011), with fit of the 2-
cycle power function being an effect of experimenters telling chil-
dren the placement of 500. In the typical number-line task (Siegler
& Booth, 2004; Siegler & Opfer, 2003, Exp. 1; Booth & Siegler, 2006,
Exp. 2; Laski & Siegler, 2007; Opfer & Martens, 2012; Opfer &
Siegler, 2007; Opfer & Thompson, 2008; Thompson & Opfer,
2008; though see Siegler & Booth, 2004, Exp. 2, and Booth &
Siegler, 2006, Exp. 1, for use of anchors), children are given no
supervision on any of their number line placements. In contrast,
in all studies finding a superior fit of the 2-cycle power function,
children’s estimate of the halfway point is anchored. For example,
in Slusser et al. (2013), children were told, ‘‘Because 500 is half of
1000, it goes right in the middle between 0 and 1000. So 500 goes
right there, but it’s the only number that goes right there.” Given
previous training studies (Opfer & Siegler, 2007; Opfer &
Thompson, 2008; Thompson & Opfer, 2008) finding that a single
trial of feedback can increase linearity of estimates, such anchors
seem highly likely to affect children’s estimates.

While these two potential causes of the discrepancy in findings
are not mutually exclusive, each cause has different theoretical
implications. From the logarithmic-to-linear-shift account, differ-
ences in sampling are predicted to be minor because oversampling
has only a small impact on absolute fits and no impact on model
selection. In contrast, from the proportion-judgment account, dif-

Fig. 1. Model of early numerical magnitude representations (from Opfer & Siegler,
2012).
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