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a b s t r a c t

Quantifying and modeling shape variation within a population, identifying morphological
contrasts across groups, and categorizing individuals or objects according tomorphological
similarity are central problems in numerous domains of science and applications. In this
paper, we present an approach to optimal shape categorization through a new family of
metrics for shapes presented as a finite collection of labeled landmark points.We develop a
technique to learn metrics that optimally differentiate and categorize shapes using Monte
Carlo optimization methods. We discuss the theory and the practice of the methods and
apply them to the analysis of synthetic data and the classification of multiple species of
fruit flies based on the shape of their wings.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The problems of modeling, classifying and recognizing shapes permeate many domains of science and applications.
To exemplify, the investigation of organismal phenotypic variation and its genetic underpinnings often leads to complex
problems in shape analysis (cf. [1–3]). The intricate morphology of pollen grains is of great interest to paleontologists as
they form the most abundant and extensive record of plant diversity (cf. [4]). In ecology, there is evidence that variation in
shape of spatial vegetation patterns might signal critical changes in ecosystems (cf. [5,6]). These are just a few examples in
the broad landscape of problems that involve shape quantification and analysis.

Loosely speaking, the shape of an object is its geometry modulo position, orientation and scale, although depending on
the context scale might not be filtered out. The first formal mathematical treatment of shape, due to Kendall, adopts a shape
representation based on labeled landmark points [7]. This is illustrated in Fig. 1 that shows a fruit fly wing represented
by twelve landmark points placed at vein crossings [8]. Kendall [9] constructed a shape space equipped with a metric that
quantifies morphological similarity and contrast, providing a setting for systematic statistical analysis of shape variation
(cf. [10]).

In the original model, all landmark points were treated as equally important in the process of constructing a shape
space and defining a shape metric. Oftentimes, however, the morphological differences that most sharply contrast two or
more shape populations, such as different species of fruit flies, are concentrated in particular regions. This suggests the
investigation of inhomogeneous variants that highlight regions of interest. Statistical approaches to ‘‘weighted’’ landmark
systems have been investigated in [11,12]. In this paper, we develop a shape space formulation that yields a family of shape
spaces andmetrics parameterized by n×n positive definite, symmetric matrices, where n is the number of landmark points.
The matrices encode weights assigned to landmarks or linear combinations thereof, thus having the effect of attributing
different importance to different parts of a shape.

This family of shape spaces and metrics at hand, in practice, one now has the problem of selecting a model that is
‘‘optimally’’ suited to an application. In this context, an important goal is to have computationally feasible ways of choosing
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Fig. 1. Fruit fly wing with twelve landmark points.

a shape model that is particularly effective in solving a shape categorization problem such as classifying species of fruit
flies. As the search space (of symmetric matrices) is typically high dimensional, this paper also investigates Monte Carlo
methods to learn shape models for effective shape categorization. We formulate the question as an optimization problem in
the vector space of trace-zero, symmetric matrices that we approach with simulated annealing. We illustrate the approach
with synthetic data and validate themethod through the classification ofmultiple species of fruit flies based on rather subtle
differences in the shape of their wings.

We note that since the introduction of the landmark model there has been an explosion in developments in the field
of shape analysis, particularly over the last two decades. Since the literature is vast, we just provide a few references that
may help the interested reader navigate some of the shape literature. In many approaches, various types of morphological
signatures or features are associatedwith objects and shape analysis is performed in feature space. These signatures typically
are of a geometric, statistical or topological nature (cf. [13–17]). In other approaches, shape spaces whose elements are
curves, surfaces or point clouds representing the shape of objects are employed and a variety of shape metrics have been
investigated using techniques from differential and metric geometry (cf. [18–23]). Spectral geometry methods also have
been used in multiple studies of shape (cf. [24,25]). These approaches have been applied to problems in a broad variety of
areas. Nonetheless, development of techniques for learning a shape model that is well suited to a particular application is
still incipient. This paper addresses the problem in the context of supervised learning of landmark models.

The remainder of the paper is organized as follows. In Section 2, we first review a formulation of the standard landmark
model and then construct a family of shape spaces with weighted landmarks. In Section 4, we use Monte Carlo methods to
solve optimization problems associated with learning shape models that optimize shape classification. A set of experiments
with synthetic data are discussed in Section 5 to illustrate themethod and the gains using the simulated annealing approach
to the learning problem. Applications are presented in Section 6, where we apply our method to taxonomic classification of
fruit flies based on the shape of their wings. We close with some additional discussion and remarks.

2. Landmark models of shape

In a landmark model, a shape in Rk is represented by a labeled collection of n points p1, . . . , pn ∈ Rk, which we encode
as a k× nmatrix P =

[
p1 . . . pn

]
. (Throughout the paper, we write vectors in Rk as column vectors and transposition of

matrices is indicated by a superscript T .) The only restriction imposed is that not all landmark points be the same.

2.1. The classical model

Before introducing the general weighted model, we briefly review a formulation of the classical model that is based on
the Euclidean metric on the space Rk×n of all k× n matrices, induced by the usual inner product

⟨P,Q ⟩ =
n∑

j=1

⟨
pj, qj

⟩
=

k∑
i=1

n∑
j=1

pijqij. (1)

(We abuse notation by also writing ⟨ , ⟩ for the usual dot product on Rk.) The corresponding norm is the Frobenius norm
∥P∥ = ⟨P, P⟩1/2.

The first step in defining shape is to obtain a representation that is insensitive to translations. This is done by restricting P
to the (kn−k)-dimensional subspaceM(k, n) of centeredmatrices; that is, the subspace ofmatrices that satisfy p1+· · ·+pn =
0. We refer to the orthogonal projection π : Rk×n

→ M(k, n) as the centering operation. If c = (p1+· · · pn)/n is the centroid
of P , then centering is given by π (P) =

[
p1 − c . . . pn − c

]
.

For scale invariance, we simply restrict centered matrices to the unit sphere P(k, n) inM(k, n). The corresponding scaling
operation is given by P ↦→ P/∥P∥. Note that P ̸= 0 because we are assuming that not all landmarks coincide. Centered
matrices of unit Frobenius norm are known as pre-shapes. The pre-shape space P(k, n) is thus a (unit) sphere of dimension
kn− k− 1.
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