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h i g h l i g h t s

• We consider the asymptotic existence of proportionally fair allocations of indivisible goods.
• Proportionally fair allocations exist with high probability if the number of goods is a multiple of the number of agents.
• Proportionally fair allocations exist with high probability if the number of goods grows asymptotically faster than the number of agents.
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a b s t r a c t

Fair division has long been an important problem in the economics literature. In this note, we consider
the existence of proportionally fair allocations of indivisible goods, i.e., allocations of indivisible goods in
which every agent gets at least her proportionally fair share according to her own utility function. We
show thatwhenutilities are additive andutilities for individual goods are drawn independently at random
from a distribution, proportionally fair allocations exist with high probability if the number of goods is a
multiple of the number of agents or if the number of goods grows asymptotically faster than the number of
agents.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The allocation of goods among interested agents is a task that
occurs frequently in practical situations and is therefore an impor-
tant issue for the society. Some goods, such as land and cake, are
divisible—each piece of land or cake can be split among multiple
agents. Others, like houses and cars, are indivisible—each house or
car cannot be split among different agents. A major concern when
allocating goods among agents is that the resulting allocation is
fair. Several notions of fairness have been considered in the lit-
erature. For example, an envy-free allocation is one in which ev-
ery agent values her bundle at least as much as any other agent’s
bundle (Foley, 1967; Varian, 1974), while an allocation achiev-
ing max–min fairness is one that maximizes the minimum utility
among all agents (Bezáková and Dani, 2005). We refer to Brams
(2006) and Klamler (2010) for an overview of the fair division lit-
erature.

In this note, we consider proportionally fair allocations, i.e., al-
locations in which every agent gets at least her proportionally fair
share according to her own utility function (Steinhaus, 1948). In
otherwords, in a proportionally fair allocation, the utility that each
agent gets from her allocation is at least a 1/n fraction of her utility
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of thewhole set of goods. A proportionally fair allocation is the first
kind of fair division studied in the literature, and is therefore some-
times referred to as a simple fair division. The existence of a pro-
portionally fair allocation is guaranteed if the following two con-
ditions are satisfied simultaneously: (i) there is no indivisible good
with positive value; (ii) the utility of an agent for a piece is equal to
the sum of the utilities of the agent for its parts when the piece is
divided into several parts. In general, however, proportionally fair
allocations are not guaranteed to exist; a simple example is when
we have one good and two agents both of whom value the good
positively.

Even though proportionally fair allocations of indivisible goods
are not guaranteed to exist, we show that under rather general
settings, they exist with high probability as the number of agents
and goods grows. We assume that utilities of agents for goods
are drawn independently at random from a distribution, and we
make a very common assumption that utilities are additive, i.e., the
utility of an agent for a bundle of goods is the sum of the utilities
of the agent for each good. We show that when the distribution
does not put all probability on a single point, proportionally fair
allocations exist with high probability if the number of goods is a
multiple of the number of agents or if the number of goods grows
asymptotically faster than the number of agents. In other words,
settings in which proportionally fair allocations do not exist are
rare exceptions when the number of goods and agents is large and
satisfies one of the aforementioned relations.
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1.1. Related work

Dickerson et al. (2014) considered asymptotic existence and
nonexistence of envy-free allocations. They showed that under
additive utilities, envy-free allocations are unlikely to exist even
when the number of goods is larger than the number of agents
by a linear fraction. On the other hand, they proved that when
the number of goods is larger than the number of agents by a
logarithmic factor, such allocations are likely to exist under certain
technical conditions on the probability distribution. Amanatidis
et al. (2015) and Kurokawa et al. (in press) considered allocations
that gives each agent a maximin share guarantee and showed
that such allocations exist with high probability when utilities are
additive. Asymptotic statements have been considered in other
areas of economics as well. For instance, Manea (2009) established
that the allocation obtained by the random serial dictatorship
mechanism is ordinally inefficient with high probability when
agents’ preference profiles are drawn at random. Incentives and
stability in large matching markets have also been considered in
the literature (Immorlica and Mahdian, 2005; Kojima and Pathak,
2009).

We now make some comments on the relation between our
results and those of Dickerson et al. (2014) concerning envy-
free allocations. As we will later elaborate, proportional fairness
is a weaker notion of fairness than envy-freeness, i.e., envy-free
allocations are also proportionally fair when utilities are additive.
Dickerson et al. showed that under additive utilities, envy-free
allocations are unlikely to exist when the number of goods is
larger than the number of agents by a linear fraction. Theorem 3.1
contrasts that result by showing that proportionally fair allocations
are likely to exist even when the number of goods is the same as
the number of agents.

On the other hand, Dickerson et al. proved that under certain
technical conditions on the probability distribution, envy-free al-
locations are likely to existwhen the number of goods is larger than
the number of agents by a logarithmic factor. (They left open the
gap between constant and logarithmic factors for envy-freeness.)
Theorem 3.2 shows that for proportionally fair allocations, any su-
perconstant gap suffices to establish likelihood of existence. More-
over, although Dickerson et al.’s result allows for the utilities of dif-
ferent goods to be drawn from different distributions, it does not
imply our result even in the case where m = Ω(n log n) because
their result relies on technical conditions on the probability distri-
bution, whereas Theorem 3.2 holds for general probability distri-
butions. Remark 3.2 reveals some limitations on generalizing our
results to allow for the utilities of different goods to be drawn from
different distributions. Nevertheless, we still think that this is an
interesting direction that should be explored in future work.

2. Preliminaries

Let N = {1, 2, . . . , n} denote the set of agents, and G the set of
goodswith |G| = m. Assume that the utility ui(g) of agent i ∈ N for
good g ∈ G lies in [0, 1]. This constraint does not introduce a loss
of generality; since we will not engage in comparisons of utilities
across agents, we can scale down all utilities by their maximum. As
is very common, we assume that utilities are additive, i.e., ui(G′) =

g∈G′ ui(g) for any agent i ∈ N and any subset of goods G′
⊆ G.

For agents i ∈ N and goods g ∈ G, the utilities ui(g) are drawn
independently from a distribution D with constant mean µ. An
allocation G = (G1,G2, . . . ,Gn) is a partition of goods into bundles
for the agents so that agent i receives bundle Gi. An allocation G is
said to be proportionally fair if ui(Gi) > 1

n · ui(G) for all i ∈ N , that
is, every agent gets at least her proportionally fair share according
to her own utility function.

Note that when utilities are additive, an envy-free allocation
is also proportionally fair. Indeed, if an allocation is envy-free,

every agent likes her bundle at least as much as the bundle of any
other agent. Additivity then implies that her bundle is worth at
least a 1/n fraction of the whole set of goods. On the other hand,
a proportionally fair allocation is always envy-free when there
are two agents, but not when there are at least three agents. An
example is when an agent thinks that her bundle is worth 1/3 of
the whole set of goods, while the bundle of another agent is worth
the remaining 2/3 to the first agent.

If D puts all probability on a single point, it is clear that a
proportionally fair allocation exists if and only if the number of
items m is a multiple of n. We assume henceforth that D does not
put all probability on a single point. Nevertheless, we will allow
D to be a discrete distribution, an assumption that holds in many
natural settings. For instance, D can take the value 0 with some
probability p (if the agent does not like the good) and the value 1
with the remaining probability 1 − p (if she likes the good).

We begin by stating a general property of distributions which
we will need for our results. We omit the proof since it is
straightforward.

Lemma 2.1. Let D be a distribution with mean µ that does not put
all probability on a single point, and let X be a random variable drawn
from D . Then there exist constants δ, β > 0 such that Pr[X >
(1 + δ)µ] > β .

Hence from now on, we will assume the existence of constants
δ, β > 0 such that Pr[X > (1 + δ)µ] > β for a random variable X
drawn from D .

For our results, we will also need the following well-known
bound. The proof can be found, for example, in Mitzenmacher and
Upfal (2005).

Lemma 2.2 (Chernoff). Let X1, X2, . . . , Xm be independent random
variables taking values in [0, 1], and let X denote their sum. Then for
any ϵ ∈ (0, 1), we have

Pr[X > (1 + ϵ)E[X]] 6 e−
ϵ2E[X]

3 .

Finally, we define asymptotic (Landau) notations used in this
paper. Given two functions f and g , we write f (n) = ω(g(n)) or
g(n) = o(f (n)) tomean that f dominates g asymptotically. In other
words, for every fixed positive number k, for all sufficiently large
n, we have f (n) > kg(n). Similarly, we write f (n) = Ω(g(n)) to
mean that f is bounded below by g asymptotically. That is, there
exists a fixed positive number k such that for all sufficiently large
n, we have f (n) > kg(n). We refer to Cormen et al. (2009) for a
thorough treatment of asymptotic notations.

3. Our results

We are now ready to state our results. For our first result,
we show that proportionally fair allocations exist with high
probability if the number of goods is a multiple of the number of
agents.

Theorem 3.1. Let m = kn for some constant positive integer k.
Then a proportionally fair allocation exists with probability approach-
ing 1 as n → ∞ (or equivalently, as m → ∞).

Before we go on to the formal proof of the theorem, we sketch
its outline here. We first show the statement for k = 1, i.e., the
number of goods is equal to the number of agents. The high-level
idea is that when this number is large, the utility that an agent
has for the whole set of goods is unlikely to be much higher than
the corresponding expected utility. This means that we only need
to match each agent to a good that she values slightly more than
average. Since each pair of good and agent satisfies this condition
independently and with constant probability, such a matching is
likely to exist. For the case of general k, we simply divide the goods
into k groups and perform a matching for each group.
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